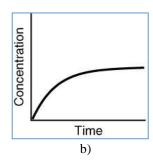
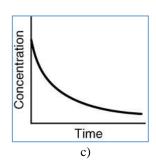
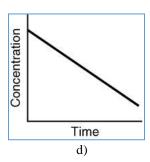

CHEMISTRY


TEST 2


Part A: Multiple Choice Questions


1.	Atom becomes ion	when there is	:			
	a) gain of electro				loss of elect	
	b) loss of electron	ns		d) neither	gain nor los	s of electrons
2.	Which sublevel ca	n by occupied	by a maximum o	f 10 electrons?		
	a) f	b) p	c) d		d) s	
3.	The nucleus of an present in a neutra		•	6 neutrons. The	total numbe	er of electrons
	a) 2	b) 6	c) 8		d) 14	
4.	Which of the follo a) electrons are b) one atom will c) atoms do not d) both atoms in	transferred from have a partial carry a partial	m one atom to and negative charge a charge	other and another wi		ial positive charge
5.	What type of bond a) ionic	ling is formed b) metallic		a molecule acc linate covalent		? ectrovalent
6.	The isotope symbo	ol for an ion th	at has 11 protons,	12 neutrons, a	nd 10 electro	ons is:
	a) $_{11}^{12}Na^{+}$	b) ²³ ₁₁ Na	c) $_{12}^{23}Mg^{2+}$	d) $^{23}_{11}Na$	+	
7.	Which one of the a) HCl	following mole b) PCl ₃	cules has an ionic c) MgF		d) CF ₄	
8.	Which of the follo a) H ₂	wing has the st	_	c) F ₂	d) O ₂	2
9.	In which of the folial FeSO ₄	•	unds iron has the (CH ₃ COO) ₂	highest oxidat c) Fe ₂ C		d) FeCl ₂
10). Which of the foll a) carbonic	_	eakest acid ? drochloric	c) nitrio	2	d) trichloroacetic
11	l. Which of followi a) NaOH	ng compounds b) HC		olyte ? c) H ₂ S	d) He	ClO ₄
12	2. Which of the foll a) HCl + NaOH -	_		-reduction proc c) $C + H_2O \rightarrow$		
	b) BaCla + NaaSo	$A \rightarrow BaSO_4 +$	2NaCl	d) $C_{3}CO_{3} \rightarrow C_{3}$	$aO + CO_2$	

13. Which of the following is not a possible graph of concentration versus time for a reactant?

14. If the rate of the reaction $A + B \rightarrow products$ is first order in A and second order in B, then the rate law is:

- a) rate = $k[A][B]^2$
- b) rate= $[A][B]^2$
- c) rate= k[A].2[B]
- d) rate= k[A]+2[B]

15. The addition of a catalyst to a reaction provides an alternative mechanism with:

- a) lower activation energy and lower reaction rate
- b) lower activation energy and higher reaction rate
- c) higher activation energy and lower reaction rate
- d) higher activation energy and higher reaction rate

16. When sodium reacts with chlorine to form sodium chloride ($2Na + Cl_2 \rightarrow 2NaCl$), electrons are lost by

- a) sodium, only
- b) chlorine, only
- c) both sodium and chlorine
- d) neither sodium nor chlorine

17. A Brönsted-Lowry base is a(n):

- a) proton donor
- b) electron donor
- c) proton acceptor
- d) electron acceptor

18. The definition of pH is:

- a) log of the hydrogen ion concentration
- b) natural log of the hydrogen ion concentration
- c) negative log of the hydroxide ion concentration
- d) negative log of the hydrogen ion concentration

19. Forward reaction is favored when

- a) concentration of reactants is decreased
- b) concentration of products is increased
- c) concentration of products is decreased
- d) concentration of products is increased and concentration of reactants is decreased

20. If the pH of a solution is 8, what is the molar concentration of hydroxide ions [OH]?

- a) $1x10^{-6}$ mol/L
- b) 6 mol/L
- c) $1x10^{-14}$ mol/L d) $1x10^{-8}$ mol/L

21. The name given to hydrocarbons containing one double bond is:

- a) alkanes
- b) alkenes
- c) alkynes
- d) dienes

22. Select the molecular formula of toluene

- a) C₅H₇
- b) C_6H_8
- c) C_7H_8
- d) C_8H_{10}

23.	Which of the folloa) CO ₂	owing compounds comb) H ₃ C-CHO					
24.		\mathbf{I}_3					
25.		ct formed in the react	tion				
	CH ₃ CH ₂ CH=CH ₂	+ $H_2O \xrightarrow{H_2SO_4} ?$					
	a) 1-butanolb) 2-butanol			c) CH ₃ 0 d) butan	•	OH)CH ₂ OH	
26.	CH ₃ CH ₂ COOCH ₂ a) diethyl ether b) propionic acid c) ethyl alcohol a	roduct/s of the follows 2CH ₃ + H ₂ O and propyl alcohol and propyl alcohol and propyl alcohol	ing reaction?				
27.	What reagents car a) butyric acid ar b) propionic acid c) propionic acid d) acetic acid and	I and formamide I and ammonia	e propionamic	le?			
28.	When a hydrogen of a family know a) phenols	atom in benzene is ron as: b) thiols	eplaced by a h	ydroxyl g	-	I, the compound is double d) alcohols	part
29.	Hydrogen bonds (CANNOT be formed and methyl alcohol hanal diethyl ether	between which	ŕ		,	,
30.	Primary alcohols a) acids	on dehydrogenation g b) ketones	give : c) aldehydes	S	d) alken	es	
31.	Which of the folloa) 4-ethyl-3-methology 4-eth	hyl-2-hexanol hyl-1-hexanol	uld be oxidized	d to form	4-ethyl-3	-methylhexanal?	
32.	Which of the folloa) CH ₃ CH ₂ COCH	owing would give a p H ₃ b) CH ₃ CH=0		s test ? H ₃ CH ₂ CI	HO (d) CH ₃ COOH	

33. Which are the products of the r a) CH ₃ -CH ₂ -COONa, CO ₂ and b) CH ₃ -CH ₂ -COONa and CO ₂ c) CH ₃ -CH ₂ -COONa and H ₂ O d) CH ₃ -CH ₂ -COONa, NaOH	d H ₂ O 2 O	CH ₂ –COOH + Na ₂ CO	$g_3 \rightarrow ?$	
 34. The correct IUPAC name for the a) 4-ethyl-2-methyl-1-bromide b) 6-bromo-2-methyl-3-ethylh c) 2-bromo-3-ethyl-2-methylh d) 2-bromo-4-ethylheptane 	e exane	npound CH ₃ -CH ₂ -CH	CH ₂ -CH ₃ I ₂ -CH-CH ₂ -CH-Br is: CH ₃	
 35. Which statement is correct? a) the carbonyl group activity in addition reactions is higher when the hydrocarbon residue is smaller b) aldehydes are more reactive than ketones c) aldehydes and ketones can add H₂, HCN, ROH, RNH₂, NaHSO₃ d) all of the above 				
36. 2-Butene will be the product of a) hydration of butane b) oxidation of 2-butanol c) hydration of propyne d) dehydration of 2-butanol	:			
37. Monoaminomonocarboxylic ac a) acidic character b) basic character	ids have:	c) amphoteric pr d) reducing pow		
38. Glucose is classified as: a) aldopentose b) ket	ohexose	c) ketotriose	d) aldohexose	
39. Which of the following is not a a) alanine b) an		c) asparagine	d) leucine	
40. When cellulose is hydrolyzed, to a) glucose b) fr	the final product uctose	cs are molecules of: c) maltose	d) ribose	

Part B: Short Answer Questions

❖ Write your answers in the space provided for each question!

1. Indicate the number of electrons, protons and neutrons in the isotope $^{79}_{35}\mathrm{Br}$.				
No. of electrons =	No. of protons =	No. of neutrons =		
2. In the following equation, $HCN + H_2O \rightleftharpoons H_3O$	identify the acid, base, conjugate ${ m O}^+ + { m CN}^-$	e acid and conjugate base:		
acid	conjugate ba	se		
base	conjugate ac	id		
Identify the conjugate acid-b	pase pairs:			
•••••••••••••••••••••••••••••••••••••••	and	······································		

3. Write the structural formula of the compound 2,3-dimethylpentane.

4. Show the equation and name the product formed when propene reacts with HBr.