МЕДИЦИНСКИ УНИВЕРСИТЕТ– ПЛЕВЕН КАТЕДРА ПО МИКРОБИОЛОГИЯ, ВИРУСОЛОГИЯ И МЕДИЦИНСКА ГЕНЕТИКА

Д-р Христина Йотова Хиткова

ПРОУЧВАНЕ НА АНТИМИКРОБНАТА АКТИВНОСТ НА НОВОСИНТЕЗИРАН НАНОРАЗМЕРЕН ТИТАНОВ ОКСИД И НЕГОВИ ПРОИЗВОДНИ

ΑΒΤΟΡΕΦΕΡΑΤ

на дисертационен труд за присъждане на образователна и научна степен «Доктор»

Научна специалност:

«Микробиология» 01.06.12

Научни ръководители: Проф. д-р Мария Средкова, дм Доц. Ангелина Стоянова, дх

Официални рецензенти: Проф. д-р Тодор Кантарджиев, дмн Проф. д-р Ива Христова, дмн

Плевен, 2015

ИЗПОЛЗВАНИ СЪКРАЩЕНИЯ

- ROS Reactive oxygen species
- •ОН хидроксилни радикали
- •O₂ супероксидни анион радикали
- е електрони
- h⁺ електронни дупки
- UV лъчи ултравиолетови лъчи
- mg милиграм
- nm нанометър
- mL милилитър
- μL микролитър
- min минути
- log₁₀ десетичен логаритъм
- мол.% моларен процент
- CFU colony forming units
- CLSI Clinical and Laboratory Standards Institute
- ESBLs extended-spectrum ß-lactamases
- Amp C Amp C-type ß-lactamase
- NDM New Delhi metallo-ß-lactamase
- KPC K. pneumoniae carbapenemase
- БАЛ бронхоалвеоларен лаваж
- ЦВК централен венозен катетър
- НФГБ неферментиращи глюкоза бактерии
- МДЛ Медико диагностична лаборатория
- МУ Медицински Университет
- УМБАЛ–Университетска многопрофилна болница за активно лечение
- НЦЗПБ Национален център по заразни и паразитни болести
- БАН Българска академия на науките
- ИОНХ Институт по обща и неорганична химия

I. ВЪВЕДЕНИЕ

Развитието на нови, алтернативни технологии за дезинфекция доведе до широкото изследване на редица метални оксиди, сред които титанов оксид (TiO₂) и негови производни. От първото съобщение за антимикробните свойства на TiO₂, публикувано през 1985 г. от Matsunaga et al., дезинфекционното действие на оксида е обект на многобройни проучвания. Данните от тях показват, че в присъствие на ултравиолетови лъчи TiO₂ изявява активност срещу широк спектър от микроорганизми (вируси, бактерии, гъбички, алги, протозои) и туморни клетки.

десетилетие възможностите През последното за приложение антимикробните свойства практическо на на титановия оксид се разшириха многократно. В областта на опазване на околната среда той се използва за пречистване на въздух, повърхностни и отпадни води, както и за дезинфекция на питейна вода. Съществено преимущество пред други органични и неорганични дезинфектанти е, че TiO₂ запазва антимикробното си действие след включване в полимери. От такива полимери се изработват медицински и санитарни изделия, опаковки за хранителни продукти и др.

Независимо от многобройните приложения на ТіО₂медиираната фотокатализа за отстраняване на химични замърсители, все още не са стандартизирани методите за изследване на фотокаталитичната дезинфекционна активност на титановите препарати. За изпитване на тяхното антимикробно действие са описани многобройни експериментални постановки, включващи физични, химични и микробиологични методи. Найчесто срещаните електронномикроскопски, спектроскопски и други техники са скъпоструващи и изискват специална апаратура. Въпреки, че разкриват механизмите на действие на TiO₂ върху клетъчните стуктури, тези техники не позволяват количествена характеристика на антимикробното действие. Освен това, наличието на разнообразни опитни постановки и изследвани параметри възпрепятства сравняването на получените резултати. Оценката на антимикробното действие е затруднена и поради липсата на стандартни микробиологични методи това в направление.

Публикуваните към момента резултати за антимикробната активност на TiO₂ се отнасят предимно за санитарно-показателни микроорганизми. Освен това, в повечето проучвания са използвани търговски продукти, най-често Degussa P-25. Относително малко са изследванията върху антимикробните свойства на новосинтезирани наноразмерни титанови препарати.

Планираните в дисертационния труд изследвания са насочени към решаване на част от съществуващите проблеми. Разработването на надежден метод за тестване на антимикробната активност на титанови препарати С фотокаталитични свойства и приложението му при клинично значими микроорганизми е предмет на дисертационния труд. Получената информация за чувствителността на широк спектър от бактерии и гъбички към новосинтезирани наноразмерни титанови препарати ще даде достоверна представа за тяхната антимикробна активност и възможност за приложението им в дезинфекционната практика.

II. ЦЕЛ И ЗАДАЧИ НА ДИСЕРТАЦИОННИЯ ТРУД

ЦЕЛ на настоящия десертационен труд е да се проучи антимикробната активност на новосинтезиран наноразмерен титанов оксид и негови производни. За реализирането на тази цел се поставиха следните **задачи**:

- Да се разработи метод за определяне на антимикробна активност на титанови препарати с фотокаталитични свойства.
- **2.** Да се определи антибактериалната активност на титанов оксид в условия на цялостен фотокаталитичен експериментален модел.
- **3.** Да се проучи фотокаталитичната активност на титанов оксид върху широк спектър от клинични бактериални изолати.
- **4.** Да се проучи фотокаталитичната активност на титанов оксид върху клинични изолати на гъбички.
- 5. Да се проучи антибактериалната активност на модифицирани титанови химични съединения и композити.

III. МАТЕРИАЛИ И МЕТОДИ

1. Титанови химични съединения и композити

1.1. Титанов оксид (TiO₂). Синтезиран е чрез нехидролитична зол-гел реакция между бензилов алкохол и TiCl₄. Новосинтезираният TiO₂ е с чист тип кристална решетка от фазата анатаз и размер на праховите частици 15-20 nm.

1.2. Цинков титанат (ZnTiO₃). Синтезиран е чрез нехидролитична зол-гел реакция между TiCl₄, ZnCl₂ и бензилов алкохол. Новосинтезираният ZnTiO₃ е с размер на праховите частици 40 nm, които показват склонност към агломерация в агрегати с големина около 1µm.

1.3. Fe/TiO₂ композит. Синтезиран е чрез нехидролитичен золгел метод. Получени са три разновидности на композита Fe/TiO₂ – с 0.5 мол.% Fe, 1 мол.% Fe и 2 мол.% Fe. Те са с чист тип кристална решетка от фазата анатаз и размер на праховите частици 12-15 nm.

1.4. Аg/TiO₂/ZnO композит. Синтезиран е чрез зол-гел метод. Отделните структурни компоненти в състава на новосинтезирания композит са с размери 6-40 nm.

TiO₂, ZnTiO₃ и Fe/TiO₂ са синтезирани в сектор "Химия" при МУ-Плевен, а композитът Ag/TiO₂/ZnO е синтезиран в лаборатория "Високотемпературни оксидни материали" на ИОНХ при БАН -София. Всички титанови препарати са характеризирани чрез рентгенографски, спектроскопски и електронномикроскопски методи в ИОНХ и Института по Физикохимия при БАН.

2. Микроорганизми

2.1. Референтни бактериални щамове

E.coli ATCC 25922, P.aeruginosa ATCC 27853, S.aureus ATCC 25923, E.faecalis ATCC 29212

2.2. Клинични бактериални щамове

- **2.2.1**. Грам-отрицателни бактерии от сем. Enterobacteriaceae 20
- 2.2.2. Грам-отрицателни бактерии от групата на НФГБ 10
- 2.2.3. Грам-положителни бактерии 10

Изолирането, идентифицирането и определянето на антибиотичната чувствителност на щамовете е извършено рутинно в МДЛ по микробиология при "УМБАЛ Д-р Г. Странски" – Плевен. За видова идентификация са използвани конвенционални методи и автоматизираните системи VITEK 2 compact и mini API (*bio Merieux*). За тестване на антибиотичната чувствителност са прилагани дисково дифузионния метод на Bauer - Kirby и автоматизираната система VITEK 2 compact (*bio Merieux*). Механизмите на резистентност са определени с фенотипни тестове, в съответствие с препоръките на CLSI (2012), а продукцията на карбапенемази е доказана в НЦЗПБ - София и Катедрата по микробиология при МУ – София

На **Табл.1** е представена информация за изпитваните клинични бактериални щамове.

Табл.1 Характеристики на клиничните бактериални щамове

N≌	Бактериален вид	Лаб. №	Вид на клиничния материал	Антибиотична чувствителност
1.	E. coli	5244/12 г.	хемокултура	чувствителен
2.	E. coli	1247/12 г.	урина	чувствителен
3.	E. coli	295/11 г.	ранев секрет	ESBLs продуцент
4.	E. coli	45/13 г.	хемокултура	ESBLs продуцент
5.	E. coli	5270-1/12 г.	ранев секрет	ESBLs продуцент
6.	E. coli	5270-2/12 г.	ранев секрет	NDM продуцент
7.	K.pneumoniae	184/12 г.	хемокултура	чувствителен
8.	K.pneumoniae	582-1/12 г.	ранев секрет	ESBLs продуцент
9.	K.pneumoniae	4015-1/13 г.	ранев секрет	КРС продуцент
10.	E.cloacae	1251/12 г.	урина	чувствителен
11.	E.cloacae	89-1/12 г.	ранев секрет	ESBLs продуцент
12.	E.cloacae	3570-2/12 г.	ранев секрет	Атр С продуцент
13.	E.aerogenes	853-3/13 г.	ранев секрет	чувствителен
14.	S.marcescens	538/12 г.	урина	чувствителен
15.	S.marcescens	239/12 г.	ранев секрет	ESBLs продуцент
16.	S.marcescens	1301/12 г.	трах. аспират	ESBLs продуцент
17.	C.freundii	2221/11 г.	урина	чувствителен
18.	C.freundii	2823/12 г.	ранев секрет	ESBLs продуцент
19.	P.mirabilis	2042/12 г.	урина	чувствителен
20.	P.mirabilis	4926-1/12 г.	ранев секрет	ESBLs продуцент
21.	P.aeruginosa	518/12 г.	ранев секрет	чувствителен
22.	P.aeruginosa	4290/11 г.	трах. аспират	чувствителен
23.	P.aeruginosa	4306/13 г.	трах. аспират	множествено резистентен
24.	P.fluorescens	414-3/12 г.	ранев секрет	чувствителен
25.	A.baumannii	899-2/12 г.	трах. аспират	множествено резистентен
26.	A.baumannii	4169/12 г.	хемокултура	множествено резистентен
27.	A.haemolyticus	3078/12 г.	урина	чувствителен
28.	C.indologenes	4007-2/12 г.	БАЛ	чувствителен
29.	M.odoratus	3232/13 г.	урина	множествено резистентен
30.	S.maltophilia	3568-1/12 г.	ранев секрет	множествено резистентен
31.	S.aureus	2054/12 г.	хемокултура	метицилин чувствителен
32.	S.aureus	4224/12 г.	ранев секрет	метицилин резистентен
33.	S.epidermidis	4604/13 г.	ЦВК	метицилин резистентен
34.	S.saprophyticus	1348/13 г.	урина	метицилин чувствителен
35.	S.lugdunensis	5628/13 г.	ранев секрет	метицилин чувствителен
36.	E.faecalis	1746/12 г.	хемокултура	ванкомицин чувствителен
37.	E.faecalis	873/13 г.	урина	ванкомицин чувствителен
38.	E.faecium	1548/12 г.	хемокултура	ванкомицин чувствителен
39.	E.faecium	3563/13 г.	хемокултура	ванкомицин резистентен
40.	B.subtilis	4123/12 г.	ранев секрет	чувствителен

2.3. Гъбички с медицинско значение – 6 щама

С.albicans – 1 щам (лаб.№ 5001/13 г., изолиран от хемокултура), *C.tropicalis* – 1 щам (лаб.№ 4326/13 г., изолиран от ранев секрет), *C.lusitaniae* – 1 щам (получен от НЦЗПБ), *C.glabrata* – 1 щам (лаб.№ 3990/11 г., изолиран от хемокултура), *C.krusei* – 1 щам (лаб.№ 1601/13 г., изолиран от ранев секрет) и *C.neoformans* – 1 щам (получен от НЦЗПБ).

Четири от щамовете са изолирани и идентифицирани до вид в МДЛ по микробиология при "УМБАЛ Д-р Г. Странски" -Плевен чрез автоматизираните системи VITEK 2 compact и mini API (*bio Merieux*). Два от щамовете са предоставени от Референтната лаборатория по Микози към НЦЗПБ - София.

3. ХРАНИТЕЛНИ СРЕДИ И АПАРАТУРА

3.1. Хранителни среди: 5% кръвен агар [КА] (*Бул Био*, *Becton Dickinson*), Сабуро агар (*Бул Био*), месопептонов бульон [МПБ] (*Бул Био*), триптон-глюкозов бульон [ТГБ] (*Бул Био*), фостатен буфериран физиологичен разтвор (*Бул Био*), Мюлер–Хинтон агар [МХА] (*Бул Био*, *Becton Dickinson*), CPS ID (*bio Merieux*) и CHROM агар Candida (*Becton Dickinson*).

3.2. Апаратура: електронна везна (PB 602-S MonoBloc, *Metller Toledo*), центрофуга (Hettich Zentrifugen micro 22 R, *Andreas hettich GmbH*), денситометър (Densimat, *bio Merieux*), ултравиолетова лампа (Sylvania 50 Hz F 8 W / BLB-T5), електронни броячи на колонии (Colony Counter, *bio Kobe*), електромагнитни бъркалки (MMS RCT, *IKA*), снабдени с прозрачни стъклени колби с обем 200 mL.

4. МЕТОДИ НА ИЗСЛЕДВАНЕ И АНАЛИЗ

4.1. МЕТОД ЗА ОПРЕДЕЛЯНЕ НА АНТИМИКРОБНА АКТИВНОСТ НА ТИТАНОВИ ПРЕПАРАТИ С ФОТОКАТАЛИТИЧНИ СВОЙСТВА:

- Изготвяне на стандартизирана микробна суспензия;
- Третиране на суспензията в условия на фотокаталитичен експериментален модел, с вземане на проби по време на експозицията;
- Култивиране на взетите проби и определяне на микробното число;
- Характеризиране на остатъчния ефект от експерименталните въздействия;
- Оценка на експерименталните въздействия.

4.1.1. Изготвяне на стандартизирана микробна суспензия

Фиг.1 Изготвяне на стандартизирана бактериална суспензия

Фиг.2 Изготвяне на стандартизирана гъбична суспензия

4.1.2. Фотокаталитичен експериментален модел

Използват се 4 прозрачни стъклени колби с обем 200 mL. Всяка колба съдържа 100 mL стандартизирана суспензия от съответния тест-микроорганизъм.

Фиг.3 Схема на фотокаталитичния експериментален модел

- (1) Първата колба се облъчва с ултравиолетова лампа, с дължина на вълната 365 nm, поставена странично на разстояние 10 cm.
- (2) Към втората колба се прибавя 100 mg TiO₂ или друг титанов препарат и колбата се обвива с алуминиево фолио.
- (3) Към третата колба се прибавя 100 mg TiO₂ или друг титанов препарат и колбата се облъчва с ултравиолетови лъчи, както първата колба.
- (4) Четвъртата колба се обвива с алуминиево фолио и служи за контрола на бактериалния растеж.

Експерименталните изследвания се провеждат на стайна непрекъснато $(22^{\circ}-25^{\circ}C),$ при разбъркване температура С електромагнитни бъркалки С режим 250 об/min. Продължителността на експозицията е от 1 до 3 часа. По време на експозицията периодично се вземат проби за изследване в количество 500 µL и се определя микробното число на суспензията.

4.1.3. Метод за определяне на микробно число в твърди хранителни среди

Протокол за определяне на микробното число:

- От всяка проба се изготвят във физиологичен разтвор по 3 серийни десетократни разреждания: 10⁻¹, 10⁻² и 10⁻³.
- От всяко разреждане се вземат 2 инокулума по 100 µL и се посяват равномерно върху цялата повърхност на 2 петрита с MXA; CPS ID агар – за *Enterococcus spp.* и *Proteus spp.* и CHROM агар Candida – за гъбчки.

- Петритата, инокулирани с бактерии, се инкубират на 37°С за 24 часа, а инокулираните с гъбички на 35°С за 48 72 часа.
- Видимите колонии се изброяват с електронен брояч.
- Микробното число се определя по формулата:

CFU/mL=брой колонии×10×реципрочната стойност на разреждането

Фиг.4 Схема за определяне на микробното число

4.1.4. Характеризиране на остатъчния ефект от експерименталните въздействия

- Третираните бактериални суспензии се съхраняват в тъмни условия при 37°С за 24 часа, а гъбичните суспензии – в тъмни условия при 35°С за 48-72 часа.
- От всяка суспензия се вземат проби за изследване в обем 500 µL и се изготвят по 2 серийни десетократни разреждания (10⁻¹ и 10⁻²).
- От всяка неразредена и разредена проба се вземат 2 инокулума по 100 µL и се посяват върху 2 петрита с агар.
- Определя се микробното число в съответствие с 4.1.3.

4.1.5. Методи за оценка на експерименталните въздействия

- Конструиране на криви на убиване и криви на оцеляване на микробните клетки.
- Определяне на редукционни индекси и преживяемост на микробните клетки в проценти.

4.2. Статистически методи за анализ на данните

- Линеен регресионен анализ за характеризиране на зависимостта между log CFU/mL към времето на експозиция за всеки щам и по групи бактерии.
- Еднофакторен ANOVA за сравняване на груповите регресионни коефициенти.

 Обобщен линеен модел с повтарящи се измервания и Смесен линеен модел – за комплексна оценка на зависимостта между log CFU/mL към времето от една страна, и вида на щама или групата бактерии - от друга.

Експерименталните данни са обработени чрез софтуерните програми Statistics X и SPSS 21. Статистическата достоверност на наблюдаваните явления е определена според установената практика (p<0,05).

V. РЕЗУЛТАТИ И ОБСЪЖДАНЕ

1. РАЗРАБОТВАНЕ НА МЕТОД ЗА ОПРЕДЕЛЯНЕ НА АНТИМИКРОБНА АКТИВНОСТ НА ТИТАНОВИ ПРЕПАРАТИ С ФОТОКАТАЛИТИЧНИ СВОЙСТВА

На базата на теоретични познания в областта на фотокатализата и експериментални постановки, публикувани от чуждестранни автори [Maness, 1999; Rincón, 2004; Rahmani, 2009], беше разработен метод за определяне на антимикробна активност на титанови препарати с фотокаталитични свойства (Метод 4.1.). При разработването на метода бяха стандартизирани параметрите на фотокаталитичния експериментален модел и протокола за определяне на микробното число.

Методът беше апробиран чрез изследване въздействието на новосинтезиран наноразмерен TiO₂ върху референтния щам E.coli ATCC 25922. Получените резултати са представени на Фиг.5. При третиране с 1 mg/mL TiO₂ и UV-А лъчи всички бактериални клетки загиват в рамките на 30 min. При третиране с 1 mg/mL TiO₂ на тъмно, и съответно при облъчване с UV-А лъчи. количеството на жизнеспособните бактериални клетки остава сигнификантно по време на 180 min експозиция. Резултатите от апробирането на метода са в подкрепа на теорията за фотокаталитичните свойства на TiO₂. Те показват. че антибактериалната активност на TiO₂ в присъствие на UV-А лъчи не се дължи на самостоятелната активност на TiO₂, нито на самостоятелното въздействие на UV-А лъчите. Тези данни са доказателство, че при така разработената експериментална постановка са създадени добри фотокаталитични условия. Осигурено е оптимално въздействие на светлинните лъчи и успешно протичане на фотокаталитичния процес.

На **Фиг.6** е илюстриран бактериалният растеж на референтния щам *E.coli* при посявка на 100 µL от разрежданията на изходната суспензия. Данните за броя на колониите са представени на **Табл.2**. Като цяло, числените стойности от разреждания 10⁻² и 10⁻³ си съответстват, а броят на колониите в двойките петрита от едно и също разреждане е сходен.

Фиг.5 Динамика на преживяемостта на *E.coli* ATCC 25922 при третиране с 1 mg/mL TiO₂ и UV-А лъчи самостоятелно, и в комбинация

Фиг.6 Колонии на *E.coli* АТСС 25922 върху МХА при посявка на 100 µL от 10⁻¹, 10⁻² и 10⁻³ разреждания на изходната суспензия

Табл.2	Брой колонии на <i>E.coli</i> АТСС 25922 при посявка на 100 µL от
	различни разреждания на изходната суспензия

Серийни разреждания	10-1		10 ⁻²		10 ⁻³		Микробно число
Инокулирани петри	I-80	II-po	I-80	II ^{-po}	I- ^{B0} II- ^{p0}		(CFU/mL)
Брой колонии	неброими	неброими	196	184	20	16	
Средна стойност на броя на колониите	неброими		190		18		185 000

Средната стойност на броя на колониите от разреждания 10⁻² (190) и 10⁻³ (18) се използва за изчисляване на микробното число:

(190×10×100) + (18×10×1000) CFU/mL = ------== 185 000 2

В този случай микробното число се определя от броя на колониите в съответните двойки петри от разреждания 10⁻² и 10⁻³, тоест от общо 4 петри, а количеството на колониите от 10⁻¹ има ориентировъчно значение.

На **Табл.3** са представени данни за броя на колониите при третиране на референтния щам *E.coli* с UV-А лъчи, TiO₂ и комбинация от TiO₂ и UV-А лъчи. Броят на колониите във всяко разреждане е средноаритметична стойност от две петрита при посявка на 100 µL.

	Експериментални фактори											
Време	UV-А лъчи			ТіО ₂ + UV-А лъчи			0-	TiO ₂				
	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻¹	10 ⁻²	10 ⁻³			
0 min	неброими	190	18	неброими	190	18	неброими	190	18			
5 min	неброими	187	18	385	63	8	неброими	161	16			
15 min	неброими	174	17	28	3	0	неброими	148	13			
30 min	неброими	185	17	0	0	0	неброими	146	12			
45 min	неброими	149	15	0	0	0	неброими	130	12			
60 min	неброими	147	11	0	0	0	неброими	128	10			
90 min	неброими	132	10	0	0	0	неброими	110	12			
120 min	неброими	121	9	0	0	0	неброими	125	10			
180 min	неброими	90	8	0	0	0	неброими	107	11			

Табл.3	Брой	колонии	на	E.coli	ATCC	25922	при	третиране	С
	1 mg/r	nL TiO ₂ и	UV-	А лъчи	самос	тоятелн	ю, и е	в комбинаці	ЛЯ

При самостоятелно облъчване с UV-А лъчи и третиране с TiO₂ на тъмно колониите от разреждане 10⁻¹ остават неброими, което поставя въпроса за целесъобразността на посявката от това разреждане. От разреждания 10⁻² и 10⁻³ колониите са добре преброими и техният брой намалява пропорционално по време на експозицията: от 190 до 90, съотв. 107 (10⁻²) и от 18 до 8, съотв. 11 (10⁻³). Незначителното намаление на количеството на колониите при тези експериментални фактори предполага скъсяване на експозиционното време от 180 на 120 min. При комбинирано въздействие с TiO₂ и UV-А лъчи на 5^{-та} min колониите от всички разреждания са броими. В този случай микробното число възлиза на 6,05×10⁴ CFU/mL и се определя на базата на данните от 6 петрита – по 2 петри от 10⁻¹, 10⁻² и 10⁻³. На 15^{-та} min средноаритметичният брой на колониите от 10⁻¹ е 28, от 10⁻² – 3, а от 10⁻¹ – 0. Микробното число е 2,90×10³ CFU/mL, изчислено от броя на колониите в 4 петрита – по 2 петри от 10⁻¹ и 10⁻².

При третиране с TiO₂ и UV-A лъчи за 15 min микробното число намалява от 10^5 до 10^3 CFU/mL. За да се определи ефективното време на въздействие е целесъобразно третираната с TiO₂ и UV-A лъчи суспензия да се тества през първите 30 min на 5 min интервали, а впоследствие на 10 min интервали, като времето на експозиция се съкрати от 180 на 60 min.

Резултатите от апробирането на метода са основание за промяна на параметрите на експерименталния протокол в следните насоки:

• Съкращаване на времето за самостоятелно третиране с TiO_2 или UV-A лъчи от 180 на 120 min, с посявки на 2 инокулума по 100 µL от 10^{-2} и 2 инокулума по 100 µL от 10^{-3} .

• Установяване на времето за въздействие на TiO₂ в присъствие на UV-A лъчи на 60 min. Вземане на проби за изследване на 5^{-та}, 10^{-та}, 15^{-та}, 20^{-та}, 25^{-та}, 30^{-та}, 40^{-та}, 50^{-та} и 60^{-та} min, с посявки на 2 инокулума по 100 µL от неразредената суспензия и по 2 инокулума от 100 µL от разреждания 10⁻¹ и 10⁻². Посявките на 2 инокулума по 100 µl от неразредената суспензия дават възможност да се снижи т.нар. "detection limit" под 5 CFU/mL.

В обобщение, разработеният метод за определяне на антимикробна активност на титанови препарати дава възможност да се изпита антимикробната активност на TiO₂ на тъмно и в присъствие на ултравиолетови лъчи, да се определи ефективното време на въздействие и да се характеризира динамиката на фотокаталитичния процес. Трябва да се отбележи, че цялостната постановка е много трудоемка, изисква голям брой контейнери с физиологичен разтвор за разреждане на пробите и петрита с агар за определяне на микробното число. Освен това, в рамките на един експеримент може да се тества антимикробното действие на един титанов препарат върху един вид микроорганизъм. Това в известна степен ограничава възможностите за приложение на метода при изпитване на голям брой химични вещества върху широк спектър от микроорганизми.

2. ОПРЕДЕЛЯНЕ НА АНТИБАКТЕРИАЛНАТА АКТИВНОСТ НА ТИТАНОВ ОКСИД В УСЛОВИЯ НА ЦЯЛОСТЕН ФОТОКАТАЛИТИЧЕН ЕКСПЕРИМЕНТАЛЕН МОДЕЛ

Антибактериалната активност на новосинтезирания наноразмерен TiO_2 беше изпитана върху четири референтни щама в условия на цялостен експериментален модел, включващ: (1) облъчване с UV-А лъчи за 120 min; (2) третиране с 1 mg/mL TiO_2 на тъмно за 120 min (3) третиране с 1 mg/mL TiO_2 и UV-А лъчи за 60 min; и (4) инкубиране на суспензиите в тъмни условия за 120 min, при непрекъснато разбъркване с магнитни бъркалки.

Динамиката на преживяемостта на референтните щамове при различните експериментални въздействия е представена на **Фиг.7.** При всички тествани щамове кривите на убиване, отразяващи влиянието на TiO₂ на тъмно са сходни с тези, получени при облъчване с UV-А лъчи. И при двете самостоятелни въздействия на 120^{-та} min броят на колониите леко намалява, но остава в рамките на сигнификантните стойности (около 10⁵ CFU/mL).

Фиг.7 Динамика на преживяемостта на референтни щамове при третиране с 1 mg/mL TiO₂ и UV-А самостоятелно, и в комбинация

Кривите на убиване, представящи комбинираното действие на TiO₂ и UV-A лъчите се снижават стръмно още в началото на експозицията. В рамките на 15 до 50 min колонииобразуващите единици намаляват рязко и от 10^5 CFU/mL достигат почти до нула. Това е доказателство за бактерицидното действие на TiO₂ във фотокаталитични условия.

На Табл.4 са представени данни за микробното число на третираните референтни фотокаталитично щамове. При въздействие върху *E.coli* ATCC 25922 с 1 mg/mL TiO₂ и UV-А лъчи на 15^{-та} min редукционният индекс е 100%. При останалите щамове също е налице изразен антибактериален ефект, но след по-продължителна експозиция, съответно: 20 min – при *P.aeruginosa* ATCC 27853, 30 min – при *S.aureus* ATCC 25923 и 50 E.faecalis ATCC 29212. min при Следователно, фотокаталитичната чувствителност на тестваните референтни щамове може да бъде представена в следната последователност:

E.coli > *P.aeruginosa* > *S.aureus* > *E.faecalis*.

Референтен	Колич. на Интервали за бакт. клетки вземане на		Третиране с 1 mg/mL TiO ₂ и UV-А лъчи				
щам	в изходната суспензия (CFU/ <u>mL</u>)	проби за посявка (min)	Време на експозиция (min)	Колич. на бакт. клетки (CFU/mL)	Редукц. индекс (%)		
E.coli ATCC 25922	186 750	5', 10', 15', 20', 25', 30', 40', 50', 60'	15'	0	100		
P.aeruginosa ATCC 27853	242 000	5', 10', 15', 20', 25', 30', 40', 50', 60'	20'	200	99.92		
S.aureus ATCC 25923	148 000	5', 10', 15', 20', 25', 30', 40', 50', 60'	30'	500	99.66		
E.faecalis ATCC 29212	436 000	5', 10', 15', 20', 25', 30', 40', 50', 60'	50'	170	99.96		

Табл.4 Сравнителни данни за преживяемостта на референтни щамове при третиране с TiO₂ и UV-А лъчи

Ha Фиг.8 показан бактериалният е растеж при фотокаталитично третираните референтни щамове *E.coli* и *E.faecalis*. И при двата щама на 5^{-та} min от експозицията колониите от неразредените проби и разреждане 10^{-1} са неброими, а от 10^{-2} те са около 100 на брой, което съответства на микробно число 10⁵ CFU/mL. След 5^{-та} min количеството на колониите започва да намалява, но времето за постигане на сигнификантна редукция е различно. При *E.coli* на 15^{-та} min липсва бактериален растеж във всички проби, докато при E.faecalis значителна редукция на колонииобразуващите единици се наблюдава едва на 50^{-та} min.

(a) *E.coli* ATCC 25922 върху МХА (b) *E.faecalis* ATCC 29212 върху CPS

Фиг.8 Колонии на *E.coli* ATCC 25922 и *E.faecalis* ATCC 29212 при третиране с 1 mg/mL TiO₂ и UV-А лъчи

За да се характеризира остатъчният ефект от експерименталните въздействия, суспензиите на референтните щамове бяха съхранявани в тъмни условия при 37°С за 24 часа. След този период, проби от тях бяха рекултивирани върху твърди хранителни среди. Рекултивираните суспензии, самостоятелно облъчени с UV-А лъчи или третирани с TiO₂ на тъмно, показаха микробно число по-голямо от 10⁵ CFU/mL, а третираните едновременно с TiO₂ и UV-А лъчи не показаха бактериален растеж.

Нашите резултати потвърждават становището, че антимикробното действие на TiO₂ се изявява само при облъчване със светлинни лъчи. Доказано е, че ултравиолетовите лъчи активират молекулата на оксида и водят до образуване на високореактивни кислородни частици: 'OH, 'O₂-, H₂O₂ и други [Ireland, 1993; Kikuchi, 1997; Cho, 2004; Banerjee, 2006]. Образуваните ROS атакуват бактериалната клетка по оксидативен механизъм, като предизвикват липидна пероксидация на мембранните структури и инхибират някои вътреклетъчни компоненти, основно коензим А [Matsunaga, 1985; Maness, 1999; Sunada, 2003; Kiwi, 2004]. Резултатът е изтичане на клетъчно съдържимо И клетъчна смърт, а впоследствие пълна минерализация на клетъчните структури.

Установените от нас различия във фотокаталитичната чувствителност на отделните видове референтни бактерии са в съответствие с данните от други публикации [Kühn, 2003; Chung, 2009; Gomes, 2009]. Хипотезата за различен тип увреждания при Грамположителните и Грам-отрицателните бактерии е широко дискутирана в областта на фотокаталитичните изследвания.

Според някои автори. Грам-положителните бактерии са поустойчиви на TiO₂ фотокатализа поради по-дебелата клетъчна стена и съответно по-големия брой ROS необходими за нейното разрушаване. Други автори считат, че Грам-отрицателните бактерии са фотокаталитично по-устойчиви и това се дължи на посложно устроената клетъчна стена, на различия в химичния състав и механизмите за защита. От друга страна е налице становище, според което не се откриват съществени различия във фотокаталитичната чувствителност при двете групи бактерии. В специализираната литература са налице различни обяснения за механизма на действие на TiO₂ върху бактериите, някои от които доста противоречиви. Специфичните условия, в които са проведени експериментите и ограничения брой проучени щамове са вероятната причина за разнопосочните становища. За да се характеризира фотокаталитичната чувствителност на Грамположителните и Грам-отрицателните бактерии е необходимо да се тестват голям брой щамове от различни таксономични групи в рамките на унифицирана опитна постановка.

В обобщение:

- Новосинтезираният наноразмерен TiO₂, в концентрация 1 mg/mL, оказва бактерицидно действие върху Грамположителни и Грам-отрицателни референтни бактерии само в присъствие на UV-А лъчи.
- Самостоятелното облъчване с UV-А лъчи не оказва бактерициден ефект върху Грам-положителни и Грамотрицателни референтни бактерии.
- Резултатите от проучването на активността на TiO₂ върху референтни бактериални щамове са основа за разработване на протокол за изпитване на фотокаталитичната антибактериална активност на TiO₂ върху Грам-положителни и Грам-отрицателни аеробни неспорообразуващи бактерии.

3. ПРОУЧВАНЕ НА ФОТОКАТАЛИТИЧНАТА АКТИВНОСТ НА ТИТАНОВ ОКСИД ВЪРХУ ШИРОК СПЕКТЪР ОТ КЛИНИЧНИ БАКТЕРИАЛНИ ИЗОЛАТИ

Фотокаталитичната активност на новосинтезирания наноразмерен TiO₂ беше проучена върху 40 чувствителни и резистентни към антибиотици клинични бактериални изолата. Клиничните изолати на аеробните неспорообразуващи бактерии бяха третирани с 1 mg/mL TiO₂ и UV-А лъчи за 60 min, а изолата на *B.subtilis* – при същите условия за 90 min.

3.1. ФОТОКАТАЛИТИЧНА АКТИВНОСТ НА TIO₂ ВЪРХУ ГРАМ-ОТРИЦАТЕЛНИ БАКТЕРИИ ОТ СЕМ. *ENTEROBACTERIACEAE*

Резултатите за фотокаталитичната активност на TiO₂ върху клинични изолати на *E.coli* показват, че при средни стойности на началното микробно число 1,78×10⁵ ± 7,8×10⁴ CFU/mL до 30^{-та} min на експозицията са унищожени между 96.39% и 99.99% от бактериалните клетки.

Най-чувствителен към TiO₂ е ESBLs продуциращия щам №4, с 99.99% редукционен индекс за 10 min. Щам №6, продуцент на NDM, е с много добра фотокаталитична чувствителност и 99.94% редукционен индекс за 10 min. Най-резистентен към TiO₂ е ESBLs продуциращия щам №3, при който едва на 30^{-та} min загиват 99.89% от бактериалните клетки, а след 24 часа съхранение на суспензията в тъмни условия са отчетени 20 CFU/mL (99.987% краен редукционен индекс). Другите фотокаталитично третирани суспензии са без бактериален растеж след рекултивиране, т.е. количеството на колониите е под "detection limit" (< 5 CFU/mL).

E.coli	Чувствителност	Колич. на бакт. кл. в	Треті ТіС	иране с 1 ₂ и UV-А.	mg/mL пъчи	Остатъчен ефект
	към антибиотици	изходната суспензия (CFU/mL)	време	CFU/ mL	Редукц. индекс (%)	uned 24 yaca (CFU/mL)
Щам №1	чувствителен	124 250	20'	4 490	96.39	< 5
Щам №2	чувствителен	194 500	15'	250	99.87	< 5
Щам №3	ESBLs продуцент	149 250	30'	170	99.89	20
Щам №4	ESBLs продуцент	159 000	10'	10	99.99	< 5
Щам №5	ESBLs продуцент	255 500	15'	1 210	99.53	< 5
Щам №6	NDM продуцент	185 000	10'	105	99.94	< 5

Табл.5	Фотокаталитична	активност	на	TiO ₂	върху	клинични
	изолати на <i>E.coli</i>					

Получените от нас резултати са близки до тези от други проучвания, проведени при сходни експериментални условия. По данни на Huang et al., 2000, при въздействие с 1 mg/mL TiO₂ (Degussa P-25) върху *E.coli* суспензия с гъстота 10⁶ CFU/mL, 96% от клетките загубват своята жизнеспособност за 30 min, а в рамките на 60 min загиват всички бактериални клетки. При тестването на други видове от сем. *Enterobacteriaceae* се установи, че до 40^{-та} min на фотокаталитичното въздействие се редуцират от 99.12% до 100% от бактериалните клетки (*Табл.6*).

Бактериален	Чувствителност към антибиотици	Колич. на бакт. кл. в	Трети ТіО	Остатъчен ефект слел 24		
щам		суспензия (CFU/mL)	време	CFU/ mL	Редукц. иңдекс (%)	след 24 часа (CFU/mL)
№7 K.pneumoniae	чувствителен	157 000	10'	40	99.97	< 5
№8 K.pneumoniae	ESBLs продуцент	144 500	15'	60	99.96	20
№9 K.pneumoniae	КРС продуцент	112 500	40'	100	99.91	10
№10 E.cloacae	чувствителен	161 250	20'	0	100	< 5
№11 E.cloacae	ESBLs продуцент	191 000	40'	30	99.98	40
№12 E.cloacae	Атр С продуцент	251 250	20'	215	99.91	< 5
№13 E.aerogenes	чувствителен	237 250	10'	100	99.96	< 5
№14 S.marcescens	чувствителен	246 500	40'	2 166	99.12	90
№15 S. <i>marcescens</i>	ESBLs продуцент	442 000	30'	240	99.95	30
№16 S. <i>marcescens</i>	ESBLs продуцент	239 250	15'	20	99.99	< 5
№17 C.freundii	чувствителен	149 000	25'	100	99.93	< 5
№18 C.freundii	ESBLs продуцент	197 500	20'	270	99.86	< 5
№19 <i>P.mirabili</i> s	чувствителен	350 500	10'	403	99.89	< 5
№20 <i>P.mirabili</i> s	ESBLs продуцент	356 500	10'	20	99.99	< 5

Табл.6 Фотокаталитична активност на TiO₂ върху клинични изолати от сем. *Enterobacteriaceae*

Систематизирани по видове бактерии, данните са следните: • Два от клиничните изолати на *К.pneumoniae* – щам №7 (чувствителен към антибиотици) и щам №8 (продуцент на ESBLs), показват изключително добра фотокаталитична чувствителност. След рекултивиране, третираната суспензия на Щам №7 е без бактериален растеж (< 5 CFU/mL), а при щам №8 са отчетени 20 CFU/mL (99.986% краен редукционен индекс). К. pneumoniae щам Nº9, (продуцент на KPC) е сравнително устойчив на фотокаталитично въздействие с ТіО₂. Налице е 99.91% редукция на клетките за 40 min и 10 CFU/mL след рекултивиране (99.991% краен редукционен индекс).

• Представителите на *Enterobacter* и *Citrobacter* показват добра фотокаталитична чувствителност към TiO₂. При повечето от тях ефективното време на въздействие варира между 10 и 25 min.

• При изолатите на S.marcescens се наблюдават различия във фотокаталитичната чувствителност. Най-чувствителен е щам №16 (продуцент на ESBLs), при който 99.99% от клетките загиват за 15 min. Най-резистентен към TiO₂ е щам №14 (чувствителен към антибиотици), при който сигнификантна редукция на бактериалните клетки (99.12%) се достига за 40 min, а след рекултивиране са открити 90 CFU/mL (99.963% краен редукционен индекс).

• Клиничните изолати на *P.mirabilis* (1 чувствителен към антибиотици и 1 продуцент на ESBLs) показват изразена фотокаталитична чувствителност към TiO₂. При равен начален брой колонииобразуващи единици (3,5×10⁵ CFU/mL) за 10 min загиват съответно 99.89% и 99.99% от бактериалните клетки.

На Фиг.9 е представена кинетиката на фотокаталитичния процес при тестваните клинични щамове ентеробактерии. Наблюдава се намаление на колонииобразуващите единици с 5 log₁₀ и снижаване под границата на експерименталното откриване. Кинетичните криви на *E.coli* (щамове №1 – № 6) са сходни по между си и наподобяват криви от първи порядък. Кривите на щамове №7, №8, №10, №12, №13, №16, №18, №19 и №20 също се доближават до първи кинетичен порядък, а тези на №9, №11, №14, №15 и №17 са с по-сложна характеристика. При щамове №7, №10 и №17 се наблюдава т.нар. опашка, изразяваща се в поява на единични колонии в края на експозицията. Фотокаталитичната чувствителност на различните видове от сем. Enterobacteriaceae е подобна на E.coli, което вероятно се дължи на общия модел на изграждане на клетъчната стена.

От изключителен интерес е въпроса за активността на титановия оксид срещу резистентни към антибиотици бактерии. Данните за фотокаталитичния отговор при ентеробактериите показват, че всички продуценти на широкоспектърни β-лактамази загиват по време на 60 min третиране с 1 mg/mL TiO₂ и UV-A лъчи, въпреки различната скорост на фотокаталитичния процес. При шамове №4, №5, №8, №12, №16, №18, №20 над 99% редукционен индекс се достига за период от 10 до 20 min, а при №3, №11, №15 - съответно за 30 до 40 min. При карбаленемази продуциращите щамове *E.coli* №6 и *K.pneumoniae* №9 сигнификантна редукция на бактериалните клетки се наблюдава съответно на 10^{-та} и 40^{-та} min ОТ експозицията. Подобни вариации в скоростта на фотокаталитичната реакция се срещат и при чувствителните към антибиотици изолати.

Врене на екопозиция, тіп

Време на екопозиция, min

Фиг.9 Криви на убиване на ентеробактерии при фотокаталитично третиране с 1 mg/mL TiO₂

Преобладаваща част от публикациите за антибактериалната активност на TiO₂ са свързани с *E.coli*. Информацията за други видове ентеробактерии е оскъдна. Ibánez et al., 2003 установяват, че над 99.9% от клетките на E.coli K-12 и E.cloacae 29C/M-A4 загиват след 40 min третиране с 0,1 g/l Degussa P-25 и UV-А лъчи, като при E.coli колониите намаляват с 5 log₁₀, а при E.cloacae съответно с 4 log₁₀. Block et al., 1998 съобщават, че при третиране на 10³ CFU/mL бактериални суспензии с 0,01% Degussa P-25 и UV-A клетките лъчи. 100% ОТ на S.marcescens зубват своята жизнеспособност за 8 min, на *E.coli* - за 7 min, а на *S.aureus* – за 10 min. Тези данни сочат, че времето за инактивиране зависи от бактериите изходното количество на И специфичните експериментални условия.

3.1. ФОТОКАТАЛИТИЧНА АКТИВНОСТ НА ТІО2 ВЪРХУ НФГБ

Резултатите от фотокаталитичните изследвания на НФГБ са представени на **Табл.7**. При изходна гъстота на *P.aeruginosa* 2,67×10⁵ ± 1×10⁵ CFU/mL редукционният индекс до 30^{-та} min на експозицията е между 99.40% и 99.95%. При другите НФГБ времето за сигнификантна редукция на колониите варира между 10 и 25 min, с изключение на *S.maltophilia*, където то е 50 min.

Не се откриват съществени различия във фотокаталитичния отговор при чувствителните и резистентните към антибиотици НФГБ. Най-чувствителен към TiO₂-медиирана фотокатализа е множествено резистентният *A.baumannii* щам №25, с редукционен индекс 99.94% за 10 min, а най-устойчив – множествено резистентният *S.maltophilia*, при който почти същият редукционен индекс се достига за 50 min. Резистентността на *S.maltophilia* към фотокатализа се свързва с ниския афинитет на TiO₂ молекулата към О антигените на този бактерий [Jucker, 1997].

Бактериален	Чувствит. към антибиотици	Колич. на бакт. кл. в изходната суспензия (CFU/mIL)	Трети ТіО	Остатъчен ефект		
щам			време	CFU/ mL	Редукц. индекс (%)	след 24 часа (CFU/mIL)
№21 P.aeruginosa	чувствителен	367 250	20'	180	99.95	< 5
№22 P.aeruginosa	чувствителен	184 500	30'	480	99.74	80
№23 P.aeruginosa	множествено резистентен	250 500	20'	1500	99.40	40
№24 P.fluorescens	чувствителен	185 500	20'	100	99.95	< 5
№25 A.baumannii	множествено резистентен	192 750	10'	110	99.94	< 5
№26 A.baumannii	множествено резистентен	366 200	25	470	99.87	< 5
№27 A.haemolyticus	чувствителен	256 100	20'	130	99.95	< 5
№28 C.indologenes	чувствителен	188 250	20'	210	99.89	< 5
№29 <i>M.odoratus</i>	множествено резистентен	185 250	20'	20	99.99	< 5
№30 S.maltophilia	множествено резистентен	211 250	50'	50	99.98	< 5

Табл.7 Фотокаталитична активност на TiO₂ върху клинични изолати от групата на НФГБ

Някои сравнителни проучвания показват, че *P.aeruginosa* е по-устойчив към TiO₂ фотокатализа, в сравнение с *E.coli*. Според данни на аржентински автори, след 40 min фотокаталитично третиране с Degussa P-25 колониите на *P.aeruginosa* ATCC 27853 намаляват с 3 log₁₀, а тези на *E.coli* K-12 – с 5 log₁₀ [lbánez, 2003]. Други автори публикуват противоположни резултати [Desai, 2009].

Налице са ограничен брой публикации за действието на TiO₂ върху НФГБ, различни от *P.aeruginosa*. Cohen-Yaniv et al., 2008 съобщават, че *Flavobacterium spp.* загива по-бързо при фотокаталитично въздействие с TiO₂, отколкото *E.coli*. Обяснението на този феномен се свързва с по-силната хидрофобност на *Flavobacterium spp.*, която улеснява взаимодействието на оксида с клетъчната повърхност.

Кинетиката на фотокаталитичния процес при НФГБ е показана на **Фиг.10.** При щамовете *Pseudomonas spp.* се наблюдава намаление на колониите с 5 log₁₀ за период от 25 до 50 min. Като цяло, графичните криви са сходни и се доближават до кинетика от първи порядък. Най-бърза е фотокаталитичната реакция при *P.fluorescens*, но с наличие на остатъчни колонии в края на експозицията. При другите представители на НФГБ редукция на колониите с 5 log₁₀ се осъщестява в по-широк интервал от време – между 15^{-та} и 60^{-та} min на експозицията.

Фиг.10 Криви на убиване на НФГБ при фотокаталитично третиране с 1 mg/mL TiO₂

Наблюдава се голямо разнообразие във вида на кинетичните криви. Някои се доближават до първи кинетичен порядък (щамове №25, №27), други са подобни на кинетика от първи порядък, но имат по-сложна характеристика (щамове №26 и №28) или опашка (щам №29). Кривата на щам №30 е с комбиниран кинетичен профил.

Тези графични резултати позволяват да се проследи динамиката на фотокаталитичния процес и са доказателство за бактерицидното действие на новосинтезирания наноразмерен TiO₂ върху *P.aeruginosa* и други видове НФГБ.

3.2. ФОТОКАТАЛИТИЧНА АКТИВНОСТ НА TIO₂ ВЪРХУ ГРАМ-ПОЛОЖИТЕЛНИ БАКТЕРИИ

Резултатите от фотокаталитичните изследвания на Грамположителните бактерии показват, че над 99% от бактериалните клетки загиват по време на 60 min фотокаталитично въздействие с 1 mg/mL от новосинтезирания наноразмерен TiO₂ (*Табл.8*).

Данните за клиничните стафилококови изолати са близки помежду си. При начална гъстота на суспензиите 1.20×10⁵ CFU/mL $-9,91 \times 10^5$ CFU/mL до 30^{-та} min на експозицията са редуцирани бактериалните средно 99.95 ± 0.05% от клетки. След рекултивиране, при S.saprophyticus са налични CFU/mL 20 краен редукционен индекс), докато при (99.992% другите стафилококови изолати липсва бактериален растеж (< 5 CFU/mL). При ентерококите началният брой на колониите варира от 7,70×10⁴ CFU/mL до 9,90×10⁵ CFU/mL, като между 25^{-та} и 30^{-та} min сумарният редукционен индекс е 99.62 ± 0.57%.

Бактериален	Чувствителност	Колич. на бакт. кл. в изходната суспензия (CFU/mL)	Трети ТіО	Остатъчен ефект		
щам	към антибиотици.		време	CFU/ mL	Редукц. индекс (%)	след 24 часа (CFU/mL)
№31 S.aureus	метицилин чувствителен	990 750	30'	150	99.98	< 5
№32 S.aureus	метицилин резистентен	120 000	30'	0	100	< 5
№33 S.epidermidis	метицилин резистентен	161 500	20'	150	99.91	< 5
№34 S.saprophyticus	метицилин чувствителен	273 500	25'	110	99.96	20
№35 S.lugdunensis	метицилин чувствителен	320 000	30'	300	99.91	< 5
№36 <i>E.faecalis</i>	ванкомицин чувствителен	175 000	25'	200	99.86	30
№37 E.faecalis	ванкомицин чувствителен	990 000	30'	110	99.99	< 5
№38 <i>E.faecium</i>	ванкомицин чувствителен	77 000	30'	320	99.58	40
№39 <i>E.faecium</i>	ванкомицин резистентен	299 750	30'	2850	99.05	20
№40 <i>B.subtilis</i>	чувствителен	16 580	60'	160	99.03	60

Табл.8	Фотокаталитична	активност	на	TiO ₂	върху	клинични
	изолати на Грам-п	оложителни	і бак	терии		

В групата на Грам-положителните коки са налице вариации в скоростта на фотокаталитичната реакция, но въпреки това метицилин резистентните стафилококи и ванкомицин резистентните ентерококи са податливи на TiO₂ фотокатализа. За 30 min клетките на метицилин чувствителния *S.aureus* (щам №31) се редуцират с 99.98%, а тези на метицилин резистентния *S.aureus* (щам №32) – със 100%. На 30^{-та} min от експозицията редукционният индекс при ванкомицин чувствителния *E.faecium* е 99.58%, а при ванкомицин резистентния – съответно 99.05%. До края на 60^{-та} min количеството на колониите при двата щама спада под "detection limit" (< 5 CFU/mL). Тези данни ни дават основание да считаме, че във фотокаталитични условия TiO₂ атакува както ванкомицин чувствителните, така и ванкомицин резистентните ентерококи.

Кинетиката на фотокаталитичния процес при тестваните Грам-положителни коки е представена на **Фиг.11.** Налице е намаление на колонииобразуващите едининци с 5 log₁₀ в следния интервал от време: 30 – 50 min за стафилококите и 40 – 60 min за ентерококите. Като цяло, графичните криви са сходни и съответстват на първи кинетичен профил. При *E.faecium* щам №38 фотокаталитичната реакция е по-бърза, но с наличие на остатъчни колонии в края на експозицията.

Фиг.11 Криви на убиване на Грам-положителни коки при фотокаталитично третиране с 1 mg/mL TiO₂

Ефективността на TiO₂ фотокаталитичния процес срещу представители на Грам-положителните коки е обект на редица публикаци. Най-често се сравнява фотокаталитичната чувствителност на еталонния бактерий *E.coli* със *S aureus*, *E.faecalis* и *E.faecium*. Kühn et al., 2003 наблюдават, че след 60 min фотокаталитично третиране с TiO₂ колониите на *E.coli* спадат от 10⁷ CFU/mL до < 5 CFU/mL, на *S. aureus* – от 10⁵ CFU/mL до < 5 CFU/mL, а на *E.faecium* – от 10⁷ CFU/mL до 10⁴ CFU/mL. Тези данни сочат по-силна фотокаталитична чувствителност на *S aureus*, в сравнение с *E.faecium*, и по-слаба, в сравнение с *E.coli*.

Luo et al. (2008) установяват, че ентерококите са фотокаталитично по-резистентнтни от *E.coli*, но по-чувствителни от *P.aeruginosa*. Според други автори, *E.coli* и *E.faecalis* показват сходна фотокаталитична чувствителност [Grieken, 2010]. Библиографските данни в областта на фотокатализата не позволяват сравнителен анализ на абсолютните стойности, поради различия в опитните постановки по отношение на проучваните щамове, вида на фотокатализатора, светлинните източници и другите условия.

Интерес представляват резултатите за *B.subtilis*. По време на фотокаталитичното третиране с TiO₂ броят на колониите спада само с 2 log₁₀ до 60^{-та} min (от 1,66×10⁴ до 1,60×10² CFU/mL) и с още 1 log₁₀ до края на 90^{-та} min, достигайки микробно число 5×10¹ CFU/mL.

Фиг.12 Колонии на B.subtilis върху МХА: (а) изходна суспензия
(b) рекултивирана, TiO₂ фотокаталитично третирана суспензия

На **Фиг.12** са представени посявки на *B.subtilis* от изходната суспензия и от фотокаталитично третираната с TiO₂ суспензия. Броят на колониите от изходната суспензия е трицифрено число в неразредените проби, двуцифрено число в разреждане 10⁻¹ и единични колонии в разреждане 10⁻² (м.ч.=1,66×10⁴ CFU/mL). След рекултивиране на фотокаталитично третираната суспензия, броят на колониите е средноаритметично 6 (м.ч.= 60 CFU/mL). Тези данни определят краен редукционен индекс 99.638%.

Налице са значителни различия между фотокаталитичната чувствителност на Грам-положителните коки и Грамположителните спорообразуващи бактерии. За 60 min колониите на Грам-положителните коки се редуцират с 5 log₁₀, а тези на *B.subtilis* – само с 2 log₁₀. Нашите данни са в съответствие с очакванията за по-високата фотокаталитична устойчивост на спорообразуващите бактерии, в сравнение с другите видове бактерии.

10-2

15'

10'

5'

неразредена проба

(c) S.marcescens щам №15 върху МХА

(d) *A.baumannii* щам №25 върху МХА

10-1

(а) *E.coli* щам №3 върху МХА.

e) S.maltophilia върху МХА

10-1

(b) *P.mirabilis* щам №19 върху СРЅ

10-2

Фиг.13 Колонии на Грам-отрицателни бактерии при фотокаталитично третиране с 1 mg/mL TiO₂

30'

15'

5'

неразредена проба

а) S.lugdunensis щам №35 върху МХА

(b) *E.faecalis* щам №36 върху CPS (c) *E.faecium* щам №39 върху CPS

Фиг.14 Колонии на Грам-положителни бактерии при фотокаталитично третиране с 1 mg/mL TiO₂

На **Фиг.13** и **Фиг.14** е илюстриран бактериалният растеж на Грам-отрицателни и Грам-положителни неспорообразуващи аеробни бактерии при третиране с 1 mg/mL новосинтезиран наноразмерен TiO₂ и UV-A лъчи. Представените бактериални култури показват значителна редукция на бактериалния растеж по време на фотокаталитичното въздействие. От сигнификантни стойности в началото на експозицията (0 – 5 min), броят на колониите спада почти до нула между 15^{-та} и 50^{-та} min на експозицията.

3.4. Статистически анализ на експерименталните данни

Статистическият анализ на експерименталните данни целеше: (1) да оцени зависимостта между CFU/mL и времето на експозиция при всеки отделен щам и (2) да установи дали е налице връзка между CFU/mL и времето от една страна, и вида на щама или групата бактерии - от друга.

Във връзка със статистическия анализ експерименталните данни бяха разпределени по групи бактерии: група I – 6 щама *E.coli*; група II – други 14 щама от сем. *Enterobacteriaceae*; група III – 10 щама НФГБ и група IV – 9 щама Грам-положителни коки. Данните за *B.subtilis* не бяха включени в статистическата обработка, тъй като този изолат е единствен представител на аеробните спорообразуващи бактерии.

Първоначално всички данни бяха логаритмувани И проверени за нормалността на разпределението на анализираните променливи чрез теста на Kolmogorov-Smirnov и теста на Shapiro-Wilk. Проверката показа нормално разпределение на стойностите на log CFU/mL при всеки отделен щам и по групи бактерии. Стойностите на log CFU/mL и времето бяха анализирани чрез Линеен регресионен анализ. Паралелно, всички данни бяха обработени статистически с два по-сложни метода: Обобщен линеен модел с повтарящи се измервания (General linear model with repeated measures) и Смесен линеен модел (Mixed linear model). Тези модели са подходящи за комплексна оценка на зависимостта между log CFU/mL и времето от една страна, и вида на щама или групата бактерии – от друга. Смесеният линеен модел е по-общ и се прилага в случаите, когато липсват част от данните. Например, в нашето проучване е определен броя на CFU (респективно log CFU) на 0^{-та}, 5^{-та}, 10^{-та}, 15^{-та}, 20^{-та}, 25^{-та}, 30^{-та}, 40^{-та}, 50^{-та} и 60^{-та} min, но не е́ известен броя на CFU на 35^{-та}, 45^{-та} и 55^{-та} min, което наложи използването на Mixed linear model.

Резултатите от статистическата обработка на експерименталните данни са представени на Табл.9, 10, 11 и 12. Те линейните регресионни уравнения, стойностите показват на коефициент **(β)**, регресионния коефициент началния (**α**), корелационните коефициенти (r и r^2) и нивото на значимост (p). Регресионните уравнения се базират на формулата: $\mathbf{v} = \mathbf{\beta} + \mathbf{\alpha}^* \mathbf{x}$, където $\boldsymbol{\beta}$ отразява изходното ниво на log CFU₀, $\boldsymbol{\alpha}$ съответства на скоростта на убиване на бактериите, а х е времето на експозицията в минути.

Щам	Регресионно	Начален коефиц.	Регрес. коефиц.	Корела коефи	ционни циенти	Ниво на значимост
Nº	уравнение	(β)	(α)	(r)	(r ²)	(p)
1.	y = 5,9041–0,1447*x	5,9041	- 0,1447	- 0,9584	0,9186	0,0002
2.	y = 5,2002–0,1592*x	5,2002	- 0,1592	- 0,9443;	0,8918	0,0004
3.	y = 5,6740–0,0984*x	5,6740	- 0,0984	- 0,9802	0,9608	0,00000
4.	y = 5,3082–0,3704*x	5,3082	- 0,3704	- 0,9815	0,9634	0,0185
5.	y = 5,9550–0,1977*x	5,9550	- 0,1977	- 0,9822	0,9647	0,00008
6.	y = 5,1657–0,2237*x	5,1657	- 0,2237	- 0,9465	0,8958	0,0042

Табл.9 Регресионен анализ на експерименталните данни при клиничните изолати на *E.coli* (група I)

Табл.10 Регресионен анализ на експерименталните данни при представителите на сем. *Enterobacteriaceae* (група II)

Щам	Регресионно	Начален коефиц.	Регрес. коефиц.	Корела коефи	ционни циенти	Ниво на значимост
Nº	уравнение	(β)	(α)	(r)	(ľ²)	(p)
7.	y = 4,3016–0,1618*x	4,3016	- 0,1618	- 0,9050	0,8191	0,0051
8.	y = 5,4746-0,2279*x	5,4746	- 0,2279	- 0,9866	0,9734	0,0003
9.	y = 5,4879–0,0898*x	5,4879	- 0,0898	- 0,9886	0,9773	0,00000
10.	y = 4,4434–0,1143*x	4,4434	- 0,1143	- 0,8476	0,7185	0,0039
11.	y = 6,2042–0,1117*x	6,2042	- 0,1117	- 0,9496	0,9017	0,00009
12.	y = 5,7763–0,1530*x	5,7763	- 0,1530	- 0,9786	0,9577	0,00002
13.	y = 5,6370–0,3016*x	5,6370	- 0,3016	- 0,9667	0,9345	0,0073
14.	y = 6,3073 –0,0946*x	6,3073	- 0,0946	- 0,9520;	0,9064	0,00002
15.	y = 6,2854-0,1219*x	6,2854	- 0,1219	- 0,9827	0,9657	0,00000
16.	y = 5,7289–0,2330*x	5,7289	- 0,2330	- 0,9882	0,9764	0,0002
17.	y = 5,6741–0,1243*x	5,6741	- 0,1243	- 0,9306	0,8661	0,0003
18.	y = 5,9814–0,1889*x	5,9814	- 0,1889	- 0,9789;	0,9583	0,0001
19.	y = 5,8638–0,3086*x	5,8638	- 0,3086	- 0,9790	0,9584	0,0036
20.	y = 6,0234-0,4074*x	6,0234	- 0,4074	- 0,9611	0,9238	0,0389

Щам	Регресионно	Начален коефиц.	Начален Регрес. Корелационн коефиц. коефициенти		ционни циенти	Ниво на значимост
N≌	уравнение	(β)	(α)	(r)	(r ²)	(p)
21.	y = 6,2871–0,2009*x	6,2871	- 0,2009	- 0,9778	0,9560	0,0001
22.	y = 6,0897–0,1159*x	6,0897	- 0,1159	- 0,9674	0,9359	0,00002
23.	y = 5,7383–0,1222*x	5,7383	- 0,1222	-0,9846	0,9695	0,00000
24.	y = 5,0377–0,1253*x	5,0377	- 0,1253	-0,8946	0,8003	0,0011
25.	y = 5,5892–0,3119*x	5,5892	- 0,3119	-0,9520	0,9062	0,0126
26.	y = 5,9303–0,1234*x	5,9303	- 0,1234	-0,9854;	0,9710	0,00000
27.	y = 6,3951–0,2157*x	6,3951	- 0,2157	-0,9156	0,8382	0,0104
28.	y = 5,4300–0,1497*x	5,43 -	- 0,1497	-0,9809	0,9622	0,00002
29.	y = 5,2458–0,1571*x	5,2458	- 0,1571	-0,9410	0,8856	0,0005
30.	y = 6,3346-0,0847*x	6,3346	- 0,0847	0,8939	0,7990	0,0005

Табл.11 Регресионен анализ на експерименталните данни при клиничните изолати от групата на НФГБ (група III)

Табл.12 Регресионен анализ на експерименталните данни при клиничните изолати на Грам-положителните коки (група IV)

Щам	Регресионно	Начален коефиц.	Регрес. коефиц.	Корела коефи	ционни циенти	Ниво на значимост
Nº	уравнение	(β)	(α))	(r)	(r ²)	(p)
31.	y = 6,3089–0,1325*x	6,3089	- 0,1325	- 0,9919	0,9839	0,00000
32.	y = 5,3975–0,1412*x	5,3975	- 0,1412	- 0,9863	0,9728	0,00001
33.	y = 5,6641–0,1828*x	5,6641	- 0,1828	- 0,9912	0,9826	0,00001
34.	y = 6,0097–0,1531*x	6,0097	- 0,1531	- 0,9846	0,9695	0,00001
35.	y = 6,2887–0,1221*x	6,2887	- 0,1221	- 0,9744;	0,9494	0,00001
36.	y = 5,3374–0,1139*x	5,3374	- 0,1139	- 0,9915	0,9830	0,00000
37.	y = 6,1673–0,1294*x	6,1673	- 0,1294	- 0,9931	0,9851	0,00001
38.	y = 4,7317–0,0938*x	4,7317	- 0,0938	- 0,9388	0,8813	0,00006
39.	y = 6,0666–0,0935*x	6,0666	- 0,0935	- 0,9849	0,9701	0,00000

Статистическите данни се характеризират с високи корелационни коефициенти r^2 (> 0,5) и ниски стойности на p (< 0,05), което е израз на силната отрицателна корелация между log CFU/mL и времето. При всеки отделен щам log CFU/mL намалява линейно с времето, като тази закономерност е с много висока корелация (0,9851 > r^2 > 0,7185) и сигнификантна статистическа вероятност (0,00000 < p < 0,0389). Груповите данни (*Табл.13*) също показват линейна регресионна зависимост между log CFU/mL и времето на експозиция (0,0000 < p < 0,0002).

Група	Регресионно	онно Начален коефиц.		Корела коефи	Ниво на значимост	
група	уравнение	(β)	(α))	(r)	(r ²)	(p)
l	y = 4,8071–0,1126*x	4,8071	- 0,1126	-0,7809	0,6098	0,0000
1	y = 4.9052–0.1023 x	4.9052	- 0.1023	- 0.7384	0.5452	0,0002
Ш	y = 5,3228–0,1128*x	5,3228	- 0,1128	-0,8023	0,6437	0,0000
١V	y = 5,5654–0,1131*x	5,5654	- 0,1131	- 0,9175	0,8400	0,0000
Общо	y = 5,1152–0,1047*x	5,1152	- 0,1047	-0,7831	0,6132	0,0000

Табл.13 Регресионен анализ на експерименталните данни по групи бактерии

Резултатите от регресионния анализ по групи бактерии са представени в графичен вид на **Фиг.15**. Четирите регресионни прави са сходни, но с известни различия в доверителния интервал, съответно в степентта на разсейване на анализирания признак. Най-силно е разсейването в група II (представители на сем. *Enterobacteriaceae*), със средна стойност на регресионния коефициент **α** = -0,1023 и вариране в следните граници -0,0898 < **α** < -0,4074. Това е групата с най-многобройни и най-разнообразни бактериални щамове. Сходно е разсейването в група I (*E.coli*) и група III (НФГБ), със стойности на **α** съответно - 0,0984 < -0,1126 < -0,3704 и -0,0847 < -0,1128 < -0,3119. Най-слабо е разсейването в група IV (Грам-положителни коки) със стойности на **α**: -0,0935 < -0,1131 < -0,1828.

Четирите регресионни прави бяха сравнени чрез анализиране на груповите регресионни коефициенти α с помощта на еднофакторен ANOVA. Не се установиха статистически значими различия във варирането на регресионните коефициенти при различните групи бактерии (р=0,347). Ето защо може да се приеме, че във фотокаталитични условия новосинтезираният наноразмерен TiO₂ унищожава тестваните аеробни неспорообразуващи бактерии по закона на линейната регресия. със средна скорост на намаляване на log CFU/mL = -0,1047/min.

Данните от статистическия анализ са доказателство, че при Грам-отрицателните и Грам-положителните аеробни неспорообразуващи бактерии кинетиката на фотокаталитичния процес е сходна. Тя се характеризира с линейно логаритмично намаляване на жизнеспособните клетки по време на експозицията.

Група II

Група III

Група IV

В обобщение:

- Новосинтезираният наноразмерен TiO₂ в концентрация 1 mg/mL и присъствие на UV-А лъчи оказва бактерицидно действие върху различни клинични изолати на Грамотрицателни и Грам-положителни аеробни бактерии.
- При фотокаталитично третиране с 1 mg/mL TiO₂, времето за ефективно убиване на Грам-отрицателни и Грамположителни аеробни неспорообразуващи бактерии в количество 10⁵ CFU/mL е 60 min.
- Не се наблюдават статистически значими различия във фотокаталитичния отговор към TiO₂ при отделните групи Грам-отрицателни и Грам-положителни неспорообразуващи аеробни бактерии (**p** > 0,10).

- Новосинтезираният наноразмерен TiO₂ показва изразена активност както върху чувствителни към антибиотици бактериални изолати, така и върху множествено резистентни.
- Кинетиката на TiO₂ фотокаталитичния процес се характеризира с логаритмично намаляване на жизнеспособните бактериални клетки по време на експозицията. Разнообразието в профила на кинетичните криви отразява сложните взаимодействия между бактериалните клетки и титановите наночастици.
- Установява се линейна регресионна зависимост между log CFU/mL и времето на фотокаталитичната експозиция с TiO₂ при всеки отделен щам и по групи бактерии. Тази закономерност е с много висока корелация и сигнификантна статистическа вероятност (**p** < 0,05).

4. ПРОУЧВАНЕ НА ФОТОКАТАЛИТИЧНАТА АКТИВНОСТ НА ТИТАНОВ ОКСИД ВЪРХУ КЛИНИЧНИ ИЗОЛАТИ НА ГЪБИЧКИ

Фотокаталитичната активност на новосинтезирания наноразмерен TiO₂ беше изпитана върху 5 изолата на *Candida spp.* и 1 изолат на *Cryptococcus neoformans*. Суспензиите на кандидите бяха третирани с 1 mg/mL TiO₂ и UV-А лъчи за 120 min, а суспензията на *C.neoformans* – при същите условия за 150 min.

Получените резултати са представени в обобщен вид на **Табл.14**. Те показват значително разнообразие в скоростта на фотокаталитичния процес при отделните изолати на гъбички.

Щам	M	Колич. на клетките в	Трети	Третиране с 1 mg/mL TiO₂ и UV-А лъчи		
Nº	микрооен вид	суспензия (CFU/ml)	време	CFU/ mL	Редукц. индекс (%)	uaca (CFU/ml)
1.	C.albicans	7,83 × 10 ³	60'	< 5	100	< 5
2.	C.tropicalis	1,35 × 104	120'	5,5×10 ¹	99.59	< 5
3.	C.lusitaniae	1,68 × 104	120'	5,2×10 ²	96.90	60
4.	C.glabrata	3,93 × 104	120'	5,6×10 ²	98.58	40
5.	C.krusei	1,74 × 10 ⁴	120'	4,5×10 ³	74.14	340
6.	C.neoformans	1,13 × 104	150'	4,1×10 ³	96.37	40

Табл.14 Данни за преживяемостта на *Candida spp.* и *C.neoformans* при третиране с TiO₂ и UV-А лъчи

При *C.albicans* (щам №1) броят на колониите спада с повече от 3 log₁₀ за 60 min и достига стойности под 5 CFU/mL. При *C.tropicalis* (щам №2) колонииобразуващите единици намаляват с около 3 log₁₀ за 120 min (99.59% редукционен индекс), като след рекултивиране не се наблюдава микробен растеж (< 5 CFU/mL).

При *C.lusitaniae* (щам №3) фотокаталитичният процес протича с по-бавна скорост. За 120 min броят на колониите намалява с 2 log₁₀ (96.90% редукционен индекс), а след 48 часа са отчетени 60 CFU/mL (99.643% краен редукционен индекс). Подобни са резултатите за *C.glabrata* (щам №4). Спад на колонииобразуващите единици с около 2 log₁₀ за 120 min (98.58% редукционен индекс) и 40 CFU/mL след рекултивиране (99.898% краен редукционен индекс).

Фие.16 Колонии на *C.glabrata* (щам №4) на 5[•] и 120[•], и 48 часа след фотокаталитичното третиране с TiO₂

На **Фиг.16** са представени култури на *C.glabrata*, показващи количеството на микробния растеж в началото и края на експозицията, и съответно след 48 часа. При посявка на 100 µL от неразредената суспензия на 5^{-та} min колониите са в неброимо количество, на 120^{-та} min техният брой е около 50, а 48 часа след края на фотокаталитичния процес са налице само единични колонии.

Фиг.17 Колонии на *C.krusei* (щам №5) на 5' и 120', и 48 часа след фотокаталитичното третиране с TiO₂

Фотокаталитичното действие на TiO₂ срещу *C.krusei* е илюстрирано на *Фиг.17*. Наблюдава се незначителен спад на колонииобразуващите единици между 0^{-та} и 120^{-та} min на експозицията: от 1,74×10⁴ CFU/mL до 4,5×10³ CFU/mL. Въпреки това, резултатите от рекултивирането са изненадващо добри. Микробното число достига стойност 3,4×10² CFU/mL, а крайният редукционен индекс възлиза на 98.045%. Тези данни доказват наличието на антифунгална активност в периода след фотокаталитичното третиране.

Фиг.18 Колонии на *C.neoformans* върху Chrom agar при фотокаталитично третиране с 1 mg/mL TiO₂

Представените на Фиг.18 култури илюстрират фотокаталитичия процес при C.neoformans. Броят на колониите в неразредените и разредените проби не се променя съществено между 0^{-та} и 60^{-та} min на експозицията, но на 150^{-та} min се наблюдава значително намаление на колонииобразувашите единици. В неразредената проба са налице двуцифрен брой колонии, в разреждане 10⁻¹ – единични колонии, а в 10⁻² – липсва микробен растеж. Според данните от преброяването на колониите, за 150 min микробното число спада от 1,13×10⁴ до 4,1×10³ CFU/mL (96.37% редукционен индекс). След рекултивиране се откриват 40 CFU/mL, което определя краен редукционен индекс 99.646%.

Резултатите от нашето проучване показват, че след 120 min въздействие с 1 mg/mL TiO₂ и UV-А лъчи при 4 от представителите на род *Candida* (*C.albicans*, *C.tropicalis*, *C.lusitaniae* и *C.glabrata*) се наблюдава фунгициден ефект, с краен редукционен индекс между 99.643 и 100%. След 120 min експозиция, при *C.krusei* крайният редукционен индекс е със стойност около 98%. Очевидно, при този щам е необходима по-продължителна експозиция, за да се постигне сигнификантна редукция на дрождевидните клетки. При *С.neoformans* също е налице фунгициден ефект, но едва след 150 min фотокаталитично въздействие с TiO₂.

В общи линии, нашите резултати са съпоставими с данните, публикувани от други автори. При фотокаталитично въздействие с TiO_2 Lonnen et al., 2005 наблюдават редукция на *C.albicans* с 4 log_{10} за 120 min, а Kühn et al., 2003 установяват намаление на колониите на *C.albicans* с 2 log_{10} за 60 min.

Счита се, че гъбичките показват значително по-слаба фотокаталитична чувствителност, в сравнение с бактериите. Резултатите от нашите експерименти също са в подкрепа на това становище. При еднакви фотокаталитични условия (1 mg/mL TiO₂ и UV-A лъчи с дължина 365 nm), ефективното време на въздействие върху 10⁵ CFU/mL бактериални суспензии е 60 min, докато при 10⁴ CFU/mL суспензии на *Candida spp.* това време е двойно по-голямо.

Предполага се, че различията във фотокаталитичната чувствителност при гъбичките и бактериите се дължат на различия в размера и химичния състав на клетките и структурата на клетъчните им стени. Както е известно, фунгите са еукариотни микроорганизми с ригидна клетъчна стена, съставена от хитин, ßглюкани и манопротеини. Така структурираната клетъчна стена на гъбичките е по-устойчива на атаката на ROS, в сравнение с клетъчната стена на бактериите. Освен това, дрождевидните клетки са около 25-50 пъти поголеми от бактериите и това вероятно също е причина за бавното им инактивиране, тъй като се изисква участие на по-голямо количество активни кислородни частици за фотодеградацията на една клетка.

Антифунгалното действие на TiO₂ е доказано още с откриването на антимикробните свойства на оксида през 1985 г.от Matsunaga et al. От тогава до наши дни, то е изследвано в редица проучвания. Въпреки това, все още няма категорично становище относно ефикасността на фотокаталитичния процес с участието на TiO₂ при отделните видове фунги и техните морфологични форми. В тази връзка, проведените от нас изследвания допринасят за характеризиране на антифунгалните свойства на титановия оксид.

В обобщение:

- Новосинтезираният наноразмерен TiO₂ притежава изразена фотокаталитична активност върху представители на род *Candida* и род *Cryptococcus*.
- Скоростта на фотокаталитичния процес е най-висока при *C.albicans* и най-ниска при *C.neoformans*.
- При фотокаталитично третиране с 1 mg/mL TiO₂, времето за ефективно убиване на дрождевидни гъбички в количество ~ 10⁴ CFU/mL варира от 60 до 150 min.

5. ПРОУЧВАНЕ НА АНТИБАКТЕРИАЛНАТА АКТИВНОСТ НА МОДИФИЦИРАНИ ТИТАНОВИ СЪЕДИНЕНИЯ И КОМПОЗИТИ

Синтезирането на модифицирани титанови съединения и композити е актуално направление в областта на фотокатализата и цели получаване на препарати с по-добри фотокаталитични и антибактериални свойства. В тази насока, често се използва дотирането на TiO₂ с йони на благородни и преходни метали (напр. Ag и Fe), както и създаването на композитни фотокатализатори с участието на метални оксиди (напр. ZnO).

В нашето проучване беше изпитана антибактериалната активност на три вида новосинтезирани, модифицирани с Zn, Fe и Ад титанови препарати в условия на експериментален модел, включващ: (1) третиране с 1 mg/mL титанов препарат и UV-А лъчи за 60 min и (2) третиране с 1 mg/mL титанов препарат на тъмно за 120 min.

5.1. Антибактериална активност на ZnTiO₃

Получените резултати от изпитването на антибактериалната ZnTiO₃ са активност на в подкрепа на теорията за фотокаталитичните свойства на металните оксиди и техните производни. При въздействие с ZnTiO₃ върху референтни щамове в тъмни условия за 120 min микробното число намалява с 50 до 97%. но след 24 часа количеството на жизнеспособните бактериални клетки е над 10⁵ CFU/mL. Тези данни показват, че в отсъствие на светлина антибактериалното действие на препарата е много слабо и няма практическо значение.

В присъствие на UV-А лъчи ZnTiO₃ оказва бактерициден ефект върху *E.coli* ATCC 25922, с 5 log₁₀ редукция на колонииобразуващите единици за 60 min и липса на бактериален растеж след период от 24 часа (*Табл.15*). По отношение на другите бактерии, обаче, резултатите са незадоволителни. *S.aureus* ATCC 25923 и *E.faecalis* ATCC 29212 се повлияват много слабо (2 log₁₀ редукция на броя на колониите за 60 min), а при *P.aeruginosa* ATCC 27853 е налице незначителен антибактериален ефект (1 log₁₀ редукция на броя на колониите за 60 min).

Determine	Колич. на бакт. кл. в	Третира	Остатъчен		
Референтен щам	изходната суспензия (CEU/mL)	време	CFU/mL	Редукц. индекс (%)	сџект след 24 часа (CFU/mL)
E.coli ATCC 25922	1,37 × 10 ⁵	30'	5,8 × 10 ²	95.77	< 5
P.aeruginosa ATCC 27853	2,72 × 10 ⁵	60'	1.3 × 10 ⁴	95.22	> 10 ⁵
S.aureus ATCC 25923	1,47 × 10 ⁵	60'	2,5 × 10 ³	98.30	3,4 × 10 ⁴
<i>E.faecalis</i> ATCC 29212	3,25 × 10 ⁵	60'	3,9 × 10 ³	98.80	5,5 × 10 ⁴

Табл.15	Сравнителни данни за преживяемостта на референтни
	щамове при третиране с ZnTiO₃ и UV-А лъчи

Считаме, че различията във фотокаталитичната чувствителност на референтните щамове са свързани от една страна с физико-химичните характеристики на ZnTiO₃, а от друга – с биологичните свойства на бактериите. Като цяло, взаимодействието между фотокаталитичните частици и микробните клетки е комплексен процес, който зависи от различни фактори.

Тестваният ZnTiO₃ е с размер на праховите частици 40 nm. които се характеризират със силна склонност към агломерация. По-големият размер на наночастиците и способността да причина агломерират са вероятната за по-слабото антибактериално действие на ZnTiO₃. Известно e. че намаляването на размера на фотокаталитичните частици засилва антибактериалната активност, а склонността им към агломерация я отслабва. Изследвайки влиянието на ZnO с размери 10 до 50 nm върху суспензии на *E.coli* с гъстота 10⁵ CFU/mL, Padmavathy и Vijayaraghavan, 2008 установявят, че най-малките частици показват най-силен бактерициден ефект. Наночастиците с малък размер имат по-голяма повърхностна площ, което е предпоставка за генериране на по-голямо количество ROS. Освен това, те могат да преминат през клетъчната стена на бактериите и директно да инхибират респираторните ензими, докато големите агломерати не пенетрират във вътрешността на клетката.

Наблюдаваните различия във фотокаталитичната чувствителност на тестваните щамове, вероятно са свързани с някои биологични свойства на бактериалните клетки. Налице са доказателства, че E.coli се адхерира силно към повърхността на наночастиците, което благоприятства взаимодействието бактерий-катализатор и улеснява клетъчната деструкция. От друга страна, наличието на слайм при *P.aeruginosa* пречи на контакта с фотокатализатора и възпрепятства фотокаталитичния процес. Големината и формата на бактериалните клетки също оказват влияние върху фотокаталитичния процес. Бактерии с попо-кръгла малки размери И или неправилна форма взаимодействат с по-малко на брой наночастици, което може да обясни по-слабата фотокаталитична активност при определени видове.

В специализираната литература са налице многобройни данни за антимикробното действие на TiO_2 и ZnO, но информацията за производното на тях химично съединение ZnTiO₃ е оскъдна. Цинковият титанат се образува при синтеза на композита ZnO/TiO₂. ZnTiO₃, обаче, не може да бъде получен лесно и бързо се разгражда и вероятно поради това е по-слабо проучен, отколкото ZnO, TiO₂ и ZnO/TiO₂. Счита се, че фотокаталитичната активност на ZnTiO₃ е сравнима с тази на ZnO и TiO₂, тъй като двата оксида имат близки ширини на оптичната забранена зона и сходни фотокаталитични свойства. Повечето автори изследват синтетичните процеси, физико-химичните характеристики и фотокаталитичните свойства на ZnTiO₃, но не и неговата антимикробна активност.

5.2. Антибактериална активност на композита Fe/TiO2

Данните за самостоятелната активност на Fe/TiO₂ върху *E.coli* ATCC 25922 показват, че на 120^{-та} min от третирането с 0.5, 1 и 2 мол.% Fe/TiO₂ на тъмно редукционният индекс е средно 24.97 ± 6.53%, а след рекултивиране микробното число е над 10⁵ CFU/mL (*Табл.16*). Следователно, в тъмни условия антибактериалното действие на композита е незначително и не зависи от концентрацията на Fe. Потвърждава се становището, че титановите нанокомпозити не осъществявят ефективно антибактериално действие в отсъствие на светлинни лъчи.

Колич. на бакт. кл. в изходната суспензия (CFU/mL)	Tper c	Третиране на <i>E.coli</i> АТСС 25922 с 1 mg/mL Fe/TiO₂ на тъмно					
	Fe/TiO ₂	време	CFU/mL	Редукц. индекс (%)	след 24 часа (CFU/mL)		
2,25 × 10 ⁵	0.5 мол.% Fe/TiO ₂	120'	1,65 × 10 ⁵	26.67	> 10 ⁵		
1,41 × 10 ⁵	1 мол.% Fe/TiO ₂	120'	9,90 × 104	29.79	> 10 ⁵		
1,41 × 10 ⁵	2 мол.% Fe/TiO ₂	120'	1,15 × 10 ⁵	18.44	> 10 ⁵		

Табл.16 Сравнителни данни за преживяемостта на *E.coli* АТСС 25922 при третиране с Fe/TiO₂ на тъмно

Табл.17 Сравнителни данни за преживяемостта на *E.coli* АТСС 25922 при третиране с Fe/TiO₂ и UV-А лъчи

Колич. на бакт. кл. в изходните суспензии (CFU/mL)	Трет с 1 г	Остатъчен ефект			
	Fe/TiO ₂	време	CFU/mL	Редукц. индекс (%)	- след 24 часа (CFU/mL)
2,25 × 10 ⁵	0.5 мол.% Fe/TiO ₂	10'	1 × 10 ¹	99.99	< 5
1,41 × 10 ⁵	1 мол.% Fe/TiO ₂	20'	5 × 10 ¹	99.96	< 5
1,41 × 10 ⁵	2 мол.% Fe/TiO ₂	60'	6,66 × 10 ³	95.28	> 10 ⁵

В присъствие на UV-А лъчи (**Табл.17**) композитите с 0.5 и 1 мол.% Fe изявяват силна бактерицидна активност, като унищожават над 99.9% от колониите на *E.coli* още в първите 10 – 20 min. Композитът с 2 мол.% Fe редуцира 95.28% от колониите по време на 60 min експозиция, а след рекултивиране микробното число е над 10^5 CFU/mL. Тези данни дават основание да се заключи, че във фотокаталитични условия антибактериалното действие на Fe/TiO₂ зависи от съдържанието на желязо.

(a) 0.5 мол.% Fe/TiO₂

(b) 1 мол.% Fe/TiO₂

Фиг.19 Колонии на *E.coli* ATCC 25922 върху МХА при фотокаталитично третиране с 1 mg/mL от: (а) 0.5 мол.% Fe/TiO₂ и (b) 1 мол.% Fe/TiO₂

Фиг.20 Колонии на *E.coli* ATCC 25922 върху МХА при фотокаталитично третиране с 1 mg/mL от композита 2 мол.% Fe/TiO₂

Визуализацията на бактериалния растеж е показана на *Фиг.19* и *Фиг.20.* Виждат се различията в антибактериалната активност на трите вида Fe/TiO₂. Композитът с 0.5 мол.% Fe инхибира почти напълно бактериалния растеж за 10 min, а този с 1 мол.% Fe води до сигнификантна редукция на колонииобразуващите единици за 20 min.

При използване на 2 мол.% Fe/TiO₂, обаче, количеството на колониите не се променя съществено между $10^{-тa}$ и 50^{-Ta} min на експозицията и едва на 60^{-Ta} min е налице спад в броя на колониите.

Незначителното антибактериално действие на трите вида Fe/TiO₂ в тъмни условия, както и слабата фотокаталитична активност на 2 мол.% Fe/TiO₂ върху *E.coli* ATCC 25922, ни дадоха основание да третираме фотокаталитично другите референтни щамове само с композитите, съдържащи 0.5 и 1 мол.% Fe.

При фотокаталитично въздействие с 0.5 мол.% Fe/TiO₂ между 99.69% и 100% от колониите на референтните щамове се редуцират за 20 min. При третиране на *E.coli* ATCC 25922 с 1 мол.% Fe/TiO₂ редукционият индекс на 20^{-та} min е 99.96%, а след 24 часа не се установява бактериален растеж. При другите референтни щамове едва на 50^{-та} min редукционният индекс показва стойност над 99% (сумарно 99.79 ± 0.05%). След рекултивиране, при *E.coli* и *S.aureus* не се наблюдава бактериален растеж, а при *P.aeruginosa* и *E.faecalis* се отчитат 45 и 70 CFU/mL, което определя краен редукционен индекс съответно 99.969% и 99.971%.

а) 0.5 мол.% Fe/TiO₂

(b) 1 мол.% Fe/TiO₂

Представените на **Фиг.20** култури от неразредени суспензии на *E.faecalis* ATCC 29212 илюстрират разликата в скоростта на фотокаталитичния процес. При използване на 0.5 мол.% Fe/TiO₂ още на 20^{-та} min колонииобразуващите единици намаляват значително, на 25^{-та} min се наблюдават единични колонии, а на 30^{-та} min липсва бактериален растеж. При третиране с 1 мол.% Fe/TiO₂ на 10^{-та} и 30^{-та} min колониите са в неброимо количество, и едва на 60^{-та} min е налице съществен спад в броя на колониите.

Фиг.22 Криви на убиване на референтни щамове при фотокаталитично третиране с 1 mg/mL от композитите 0.5 и 1 мол.% Fe/TiO₂

Динамиката на фотокаталитичния процес показва, че при въздействие с 0.5 мол.% Fe/TiO₂, в рамките на 10 до 30 min колониите се редуцират с 5 log₁₀ до стойности под "detection limit". Кривите на убиване при четирите референтни щама са сходни и наподобяват първи ред кинетика, а при *P.aeruginosa* ATCC 27853 е налице опашка, дължаща се на оцелели бактериални клетки.

При третиране с 1 мол.% Fe/TiO₂ кинетичните криви са доста разнообразни. Кривата на *E.coli* се доближава до първи кинетичен порядък и показва редукция на колониите с 5 log₁₀ за 30 min. Графичните криви на *P.aeruginosa* и *S.aureus* са с по-сложна характеристика и достигат до "detection limit" в края на експозицията Кривата на *E.faecalis* е с комбиниран профил и спада само с 3 log₁₀ за 60 min.

Резултатите от фотокаталитичните изследвания с трите вида Fe/TiO_2 показват съществени различия, свързани с концентрацията на Fe^{3+} . Композитите с 0.5 мол.% и 1 мол.% Fe изявяват силен бактерициден ефект срещу референтния щам *E.coli*, докато композитът с 2 мол.% Fe е слабо активен.

Композитите с 0.5 мол.% и 1 мол.% Fe унищожават сигнификантно количество клетки от всички референтни щамове, но 0.5 мол.% Fe/TiO₂ е по-ефективен. Тези данни са доказателство, че фотокаталитичната антибактериална активност на Fe/TiO₂ зависи от съдържанието на Fe, чиято оптимална концентрация е 0.5 мол.%. Подобни резултати съобщават и други автори [Zhang, 2008; Endrino, 2011]. Трябва да се има впредвид, че оптималната концентрация на добавката е различна при всеки конкретен синтетичен метод. Тестваният от нас новосинтезиран нанокомпозит Fe/TiO₂ е чист анатаз, с размер на кристалите 12-15 nm. Тези характеристики се отнасят за трите вида Fe/TiO₂ (0.5, 1 и 2 мол.% Fe). Счита се, че фазата анатаз е по-активна от другите кристални фази, поради високата мобилност на електрони, по-високата степен на хидроксилиране и по-широката оптична забранена зона [Banerjee, 2006]. От друга страна, намаляването на кристалния размер е начин да се увеличи повърхностната площ на катализатора, което води до образуване на повече каталитични центрове.

Физико-химичните свойства на Fe-съдържащите титанови предпоставка фотокаталитично препарати са за силно антибактериално действие Fe/TiO₂. И на трите вида Микробиологичните данни, обаче, разкриват различия в активността на препаратите и доказват зависимостта на бактерицидното действие от съдържанието на желязо.

5.3. Антибактериална активност на композита Ag/TiO₂/ZnO

Данните от проучването на антибактериалната активност на композита Ag/TiO₂/ZnO на тъмно, и в присъствие на UV-A лъчи са представени на **Табл.18** и **Табл 19**. И при двата вида въздействия още на 20^{-та} min редукционният индекс е висок: средно 91.45 ± 7.63% при третиране с Ag/TiO₂/ZnO на тъмно и съответно 98 ± 1.78% при третиране с Ag/TiO₂/ZnO и UV-A лъчи. Всички третирани суспензии са без бактериален растеж след рекултивиране (< 5 CFU/mL).

Референтен	Колич. на бакт. кл. в	Третиране с 1 mg/mL Ag/TiO₂/ZnO на тъмно			Остатъчен ефект	
щам	щам	изходната суспензия (CFU/mL)	време	CFU/mL	Редукц. индекс (%)	след 24 часа (CFU/mL)
E.coli ATCC 25922	1,82 × 10 ⁵	20'	1,18 × 104	93.52	< 5	
<i>P.aeruginosa</i> ATCC 27853	8,45 × 10 ⁵	20'	2,02 × 104	97.61	< 5	
S.aureus ATCC 25923	2,68 × 10 ⁵	20'	2,45 × 104	90.86	< 5	
<i>E.faecalis</i> ATCC 29212	2,41 × 10 ⁵	20'	3,90 × 104	83.82	< 5	

Табл.18 Сравнителни данни за преживяемостта на референтни щамове при третиране с Ag/TiO₂/ZnO на тъмно

Референтен	Колич. на бакт. кл. в изходната	Колич. на Третиране с 1 mg/mL акт. кл. в Аg/TiO ₂ /ZnO и UV-А лъчи входната			Остатъчен ефект	
щам	суспензия (CFU/mL)	време	CFU/mL	Редукц. индекс (%)	СЛЕД 24 Часа (CFU/mL)	
E.coli ATCC 25922	1,82 × 10 ⁵	20'	3,52 × 10 ³	98.07	< 5	
P.aeruginosa ATCC 27853	8,45 × 10 ⁵	20'	2,85 × 10 ⁴	96.63	< 5	
S.aureus ATCC 25923	2,68 × 10 ⁵	20'	6,63 × 10 ³	97.53	< 5	
<i>E.faecalis</i> ATCC 29212	2,41 × 10 ⁵	20'	5,40 × 10 ²	99.78	< 5	

Табл.19 Сравнителни данни за преживяемостта на референтни щамове при третиране с Ag/TiO₂/ZnO и UV-А лъчи

На Фиг.23 е показан кинетичният процес с участието на Ag/TiO₂/ZnO при третиране на тъмно и в присъствие на UV-A лъчи. Наблюдава се редукция на колониите с 5 log₁₀ и достигане на стойности под границата на експерименталното откриване в границите на 40 - 60 min (при третиране с Ag/TiO₂/ZnO на тъмно) и 40 – 50 min (при третиране с Ag/TiO₂/ZnO и UV-А лъчи). Кривите на убиване са сходни помежду си и се доближават до първи кинетичен профил, но са С по-сложна характеристика. Представените резултати са доказателство за силната бактерицидна активност на Ад-модифицирания титанов композит, която се изявява както в присъствие на ултравиолетови лъчи, така и в тъмни условия.

Фиг.23 Криви на убиване на референтни щамове при третиране с 1 mg/mL Ag/TiO₂/ZnO

На **Фиг.24** е илюстрирано антибактериалното действие на композита Ag/TiO₂/ZnO върху референтните щамове *E.coli* и *P.aeruginosa*. Представените култури показват значително намаление на броя на колониите и липса на бактериален растеж на 40^{-та} min. Тази характерна тенденция се наблюдава както при третиране с Ag/TiO₂/ZnO и UV-A лъчи, така и при третиране с Ag/TiO₂/ZnO в тъмни условия.

(a) E.coli ATCC 25922

(b) P.aeruginosa ATCC 27853

(d) P.aeruginosa ATCC 27853

Голяма част от съвременните проучвания в областта на фотокатлизата включват Ад-модифицирани оксидни композити (напр. Ag/TiO₂, Ag/ZnO) или двукомпонентни оксидни композити (напр. TiO₂/ZnO).

Въпреки големия брой публикации за ефекта на Ag наночастици върху фотохимичните и антибактериални свойства на металните оксиди, Ag-съдържащите двукомпонентни оксидни композити са недостатъчно проучени. Според наскоро публикувани данни, във фотокаталитични условия Ag/TiO₂/ZnO за 80 min редуцира колониите на *E.coli* от 10⁷ CFU/mL почти до 0 и проявява антибактериално действие в отсъствие на светлинни лъчи [Pant, 2013].

Счита се, че фотокаталитичната способност се повишава при легиране на TiO₂ наночастици с ZnO, а добавянето на Ag може да засили тези свойства. При облъчване със светлинни лъчи молекулите на оксидните нанокомпозити се активират, като се образуват двойки e⁻/h⁺. Част от e⁻ и h⁺ бързо се рекомбинират и това намалява активността на препарата. Установено е, че Ад наночастици пречат на рекомбинацията на фотогенерираните двойки e⁻/h⁺ [Subramanian, 2001; Pant, 2013]. В допълнение, Ag наночастици абсорбират светлините лъчи, при което възниква повърхностен плазмонен резонанс и се индуцира трансфер на фотовъзбудени е от повърхността към зоната на проводимост на металните оксиди [Zielinska, 2010]. Наличието на повече свободни зарядоносители води до генериране на по-голямо количество ROS и обуславя по-силната фотокаталитична активност на съответния препарат. Въпреки големия научен интерес в тази област, механизмът на действие на Aq/TiO₂/ZnO върху бактериите не е изяснен в детайли. Възможността за изява на самостоятелно антимикробно действие при този нанокомпозит обаче, е важно предимство, тъй като отпада необходимостта от облъчване със светлинни лъчи.

В обобщение, модифицираните с Zn, Fe и Ag титанови препарати показват различна антибактериална активност, в зависимост от химичния състав и физико-химичните свойства.

- Синтезираният наноразмерен ZnTiO₃ показва антибактериална активност само в присъствие на UV-А лъчи. Налице са значителни различия във фотокаталитичното действие на ZnTiO₃ върху тестваните референтни щамове.
- Синтезираният нанокомпозит Fe/TiO₂ с 0.5 мол.%, 1 мол.% и 2 мол.% Fe показва антибактериална активност само в присъствие на UV-А лъчи. Най-силно е фотокаталитичното действие на 0.5 мол.% Fe/TiO₂. Този композит оказва силен бактерициден ефект срещу всички тествани референтни щамове.
- Синтезираният нанокомпозит Ag/TiO₂/ZnO притежава силна бактерицидна активност срещу всички тествани референтни щамове, която се изявява както в присъствие на UV-А лъчи, така и в тъмни условия.

VI. ОБОБЩЕНИ ИЗВОДИ

- 1. Разработеният от нас метод за определяне на антимикробна активност на титанови препарати дава възможност да се изпита антимикробното действие на препарата самостоятелно и в присъствие на ултравиолетови лъчи, да се определи ефективното време на въздействие, да се характеризира кинетиката на фотокаталитичния процес и да се проследи състоянието на микробната популация в периода след третирането. Този метод е подходящ за изследване на различни видове Грам-положителни и Грам-отрицателни аеробни бактерии и дрождевидни гъбички.
- Новосинтезираните наноразмерни титанови препарати TiO₂, ZnTiO₃ и Fe/TiO₂ изявяват антимикробна активност само при облъчване с UV-А лъчи.
- 3. Новосинтезираният Ag/TiO₂/ZnO изявява антимикробна активност както при облъчване с UV-А лъчи, така и в тъмни условия.
- 4. Новосинтезираният по нехидролитичен зол-гел метод наноразмерен TiO₂ притежава широк спектър на антимикробно действие. Във фотокаталитични условия той унищожава ефективно ентеробактерии, НФГБ, Грам-положителни бактерии и дрождевидни гъбички. Този препарат е активен срещу чувствителни и резистентни към антибиотици бактериални щамове.
- 5. Кинетиката на фотокаталитичния процес с участието на TiO₂ при Грам-положителните и Грам-отрицателните неспорообразуващи аеробни бактерии е сходна и се характеризира с линейна регресионна зависимост между log CFU/mL и времето на експозиция.
- 6. При фотокаталитично третиране с 1 mg/mL от новосинтезирания наноразмерен TiO₂ времето, за ефективно убиване на Грамположителни и Грам-отрицателни неспорообразуващи аеробни бактерии в количество 10⁵ CFU/mL, е 60 min, а за убиване на дрождевидни гъбички в количество 10⁴ CFU/mL то е между 60 и 150 min.
- 7. Фотокаталитичното антибактериално действие на новосинтезирания по нехидролитичен зол-гел метод Fe/TiO₂ нанокомпозит зависи от съдържанието на желязо. Оптималната концентрация на Fe за изявата на антибактериален ефект е 0.5 мол.%.
- 8. С най-изразено бактерицидно действие сред новосинтезираните наноразмерни титанови препарати са TiO₂, 0.5 мол.% Fe/TiO₂ и Ag/TiO₂/ZnO. При фотокаталитично третиране на референтните щамове *E.coli*, *P.aeruginosa*, *S.aureus* и *E.faecalis* с 1mg/mL от тези препарати се постига редукция на колониите с 5 логаритъма за 60 min.

VII. ЗАКЛЮЧЕНИЕ

Въпреки, че TiO₂ и синтезираните на негова основа химични съединения и композити са предмет на интензивни през последните три изследвания десетилетия. техните антимикробни свойства все още не са напълно проучени. Причината за това е липсата на общоприет метод за изследване антимикробна активност на титанови препарати на С фотокаталитични свойства.

Ние разработихме стандартизиран метод за оценка на антимикробните свойства на TiO₂ и негови производни. Методът е много добре възпроизводим и е приложим при Грам-положителни бактерии, Грам-отрицателни бактерии и дрождевидни гъбички. Негови предимства са използването на достъпна лабораторна апаратура, стандартни хранителни среди и конвенционални микробиологични техники. С разработването на метода беше решен важен методологичен проблем в областта на микробиологичните изследвания на вещества с фотокаталитични свойства.

С разработения метод изпитахме антибактериалната активност на новосинтезиран наноразмерен TiO₂ върху 4 референтни бактериални шама в **VCЛОВИЯ** на пълен експериментален модел. По-нататък проучихме фотокаталитичното действие на ТіО₂ върху 40 клинични бактериални изолата и 6 изолата на дрождевидни гъбички. Определихме няколко новосинтезирани активността на наноразмерни титанови препарата (ZnTiO₃, Fe/TiO₂ и Ag/TiO₂/ZnO) върху 4 референтни бактериални щама в тъмни условия и при облъчване с UV-А лъчи. Характеризирахме динамиката на фотокаталитичните процеси и проследихме състоянието на микробните популации в периода след третирането. Проведените изследвания представляват най-мащабното до сега проучване върху антимикробните свойства на TiO₂ и негови производни.

Получените резултати показват добре изразена антибактериална и антимикотична активност на изпитвания новосинтезиран TiO₂. Информацията за активността на ZnTiO₃, Fe/TiO2 и Ag/TiO2/ZnO върху референтни бактериални щамове характеризиране може да послужи като основа за на антибактериалните свойства новосинтезирани на тези наноразмерни титанови препарати. Като цяло, данните ОТ проведеното проучване сочат възможност за използване на титановите препарати като алтернатива на някои ОТ съществуващите технологии за дезинфекция.

VIII. СПРАВКА ЗА ПРИНОСИТЕ НА ДИСЕРТАЦИОННИЯ ТРУД

ПРИНОСИ С ОРИГИНАЛЕН ХАРАКТЕР

- За първи път в България е разработен и приложен метод за определяне на антимикробна активност на титанови препарати с фотокаталитични свойства.
- За първи път в света са изследвани антибактериалните и антимикотичните свойства на синтезиран по нехидролитичен зол-гел метод наноразмерен TiO₂.
- За първи път в света е извършено мащабно проучване върху активността на TiO₂ срещу широк спектър от Грамотрицателни бактерии, Грам-положителни бактерии и гъбички.
- За първи път в България са изпитани антибактериалните свойства на синтезирани по нехидролитичен зол-гел метод ZnTiO₃ и Fe/TiO₂, и на новосинтезирания нанокомпозит Ag/TiO₂/ZnO.

ПРИНОСИ С ПОТВЪРДИТЕЛЕН ХАРАКТЕР

- 1. Потвърдена е ролята на ултравиолетовите лъчи от клас А за изявата на антимикробното действие на титановите химични съединения и композити.
- Установено е, че композита Ag/TiO₂/ZnO притежава антибактериална активност в отсъствие на светлинни лъчи.
- Установено е, че във фотокаталитични условия TiO₂ унищожава чувствителни и резистентни към антибиотици бактерии.
- Потвърдено е становището, че гъбичките са порезистентни към TiO₂ фотокаталитично въздействие, в сравнение с бактериите.
- 5. Потвърдена е линейната регресионна зависимост между loa CFU/mL И времето на експозиция при Грамфотоктаталитичното третиране с TiO₂ на положителни И Грам-отрицателни аеробни неспорообразуващи бактерии.

ПРИНОСИ С НАУЧНО-ПРИЛОЖЕН ХАРАКТЕР

- 1. Стандартизирани са основните етапи на метода за определяне на антимикробна активност на титанови препарати с фотокаталитични свойства:
 - Изготвяне на стандартизирана бактериална и гъбична суспензия;
 - Провеждане на фотокаталитичния експериментален модел;
 - Определяне на микробното число;
 - Характеризиране на остатъчния ефект от фотокаталитичното въздействие.
- Осигурени са сравнимост, достоверност и възпроизводимост на резултатите при определяне на антимикробната активност на титанови препарати с фотокталитични свойства.
- Изготвен е протокол за изпитване на фотокаталитична антибактериална активност на TiO₂ върху Грамположителни и Грам-отрицателни аеробни неспорообразуващи бактерии.

IX. СПИСЪК НА НАУЧНИТЕ ПУБЛИКАЦИИ И СЪОБЩЕНИЯ ВЪВ ВРЪЗКА С ДИСЕРТАЦИОННИЯ ТРУД

Публикации в чуждестранни списания

- Stoyanova A., M. Sredkova, A. Bachvarova-Nedelcheva, R. lordanova, Y. Dimitriev, H. Hitkova, Tz. Iliev. Nonhydrolytic sol-gel synthesis and antibacterial properties of nanosized TiO₂. Optoelectronics and advanced materials rapid communications, 2010,12 (4), 2059 2063. (IF 2010 0.477)
- Hitkova H., A. Stoyanova, N. Ivanova, M. Sredkova, V. Popova, R. Iordanova, A. Bachvarova-Nedelcheva. Study of antibacterial activity of nonhydrolytic synthesized TiO₂ against *E.coli*, *P.aeruginosa* and *S.aureus. Journal of Optoelectronics and Biomedical Materials*, 2012, 4 (1), 9 – 17.
- Stoyanova A., H. Hitkova, A. Bachvarova-Nedelcheva, R. lordanova, N. Ivanova, M. Sredkova. Synthesis, photocatalytic and antibacterial properties of nanosized ZnTiO₃ powders obtained by different sol gel methods. *Digest Journal of Nanomaterials and Biostructures*, 2012, 7 (2), 777 784. (IF 2012 1.092).

Публикации в български списания

- Stoyanova A., N. Ivanova, A. Bachvarova-Nedelcheva, R. lordanova, H. Hitkova, M. Sredkova. Sol-gel preparation, characterization and photocatalytic properties of nanocrystalline TiO₂ powders. *Nanoscience & Nanotechnology*, 2012, 12, 23 27.
- Stoyanova A., H. Hitkova, N. Ivanova, A. Bachvarova-Nedelcheva, R. Iordanova, M. Sredkova. Photocatalytic and antibacterial activity of Fe-doped TiO₂ nanoparticles prepared by nonhydrolytic sol-gel method. *Bulgarian Chemical Communications.* 2013, 45, 497 – 504. (IF 2013 0.349)

Съобщения, изнесени на научни форуми в чужбина

- Sredkova M., A. Stoyanova, H. Hitkova, R. Iordanova, Y. Dimitriev, A. Bachvarova-Nedelcheva. Antibacterial activity of nanosized TiO₂ against *Escherichia coli. 21st European Congress of Clinical Microbiology and Infectious Diseases,* Milan, Italy, 7-10 May, 2011, S 304.
- Stoyanova A., N. Ivanova, H. Hitkova, M. Sredkova, A. Bachvarova-Nedelcheva, R. Iordanova. Synthesis and photodegradation activity of pure and Fe-modified TiO₂. 32 Balkan Medical Week, Nis, Serbia, 21-23 September, 2012.

Съобщения, изнесени на научни форуми в България

- Stoyanova A., A. Bachvarova-Nedelcheva, R. Iordanova, N. Ivanova, H.Hitkova, M. Sredkova. Synthesis and photocatalytic properties of ZnTiO₃ powders obtained by different sol-gel methods. *Third National Crystallographic Symposium with international participation*, 3-5 October, 2011, Sofia, Abstracts, p. 41.
- Hitkova H., A. Stoyanova, A. Bachvarova-Nedelcheva, R. lordanova, N. Ivanova, M. Sredkova. Synthesis and bactericidal effect of TiO₂ on selected pathogenic bacteria. *Fifth Balkan Conference on Glass Science and Technology, 17th Conference on Glass and Ceramics*, Nessebar, 25-29 September, 2011, Abstracts, p. 101.
- Stoyanova A., N. Ivanova, A. Bachvarova-Nedelcheva, R. lordanova, H. Hitkova, M. Sredkova. Nonhydrolytic preparation of Fe-doped TiO₂ nanoparticles and their photocatalytic activities for Reactive Black 5 degradation. *Fourth National Crystallographic Symposium NCS 2012*, 01-03 November, 2012, Sofia, Abstracts, p. 75.
- **4.** Stoyanova A., N. Ivanova, **H. Hitkova**, M. Sredkova, A. Bachvarova-Nedelcheva, R. Iordanova. Effect of synthesis conditions on photocatalytic activity of TiO₂ nanoparticles prepared by nonhydrolytic method. 14th International workshop on Nanoscience and Nanotechnology, NANO'2012, Sofia, 22-23 November, 2012.
- 5. Хиткова Х., М. Средкова, А. Стоянова, В. Попова, Н. Иванова, Р. Йорданова, А. Бъчварова-Неделчева. Антибактериална активност на наноразмерен титанов оксид срещу патогенни бактерии. XI Национален Конгрес по Клинична микробиология и Инфектология на БАМ, София, 09-11 май, 2013, Сб. рез., стр.75 76.